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Abstract—Brain network discovery has attracted much atten-
tion in recent years, which aims at inferring a set of cohesive
regions (i.e., the network nodes) and the connectivity between
these regions (i.e., the network edges) in brain from neuroimaging
data (e.g., fMRI, PET scans). Previous methods on brain network
discovery mainly focus on either estimating the connectivity
based on predefined brain regions, or inferring the brain regions
and connectivity independently. However, the tasks of discov-
ering brain regions and their connectivity are highly related
to each other and should be discovered collectively, instead of
independently. In this work, we propose a coherent data-driven
method called SGGL (Spectral Group Graphical Lasso) to derive
the nodes and edges of a brain network simultaneously. We
propose a screening strategy to reduce the time cost of solving the
corresponding optimization problem. Extensive experiments are
performed on both synthetic data and real data from ADHD-200
project. The results demonstrate the effectiveness of the proposed
method.

I. INTRODUCTION

The modern science of graphs and networks has brought
significant advances to people’s understanding of complex
systems and the interactions within them. One of the most
sophisticated systems, brain, has recently attracted much in-
terest due to the growing availability of high resolution brain
imaging data. The brain can be viewed as a network structure,
in which neurons are organized into multiple homogeneous re-
gions, and complex interactions exist between neurons within
and across different regions. The network representation of
brain as shown in right-hand-side of Figure 1 is useful in
many ways. For example, previous studies show that one can
employ subgraph selection to build classification models on
brain networks to aid disease diagnosis [1]. However, the
nodes and edges in brain networks are usually not given and
should be derived from the brain imaging data. Thus, the
discovery of brain networks is required before one can conduct
network analysis on brain, as illustrated in Figure 1.

Formally, the brain network discovery problem corresponds
to infer a set of functionally homogeneous brain regions as the
network nodes and the connectivity across these regions as the
network edges from the brain imaging data. Previous works in
this line usually focus on inferring the edges based on known
groups [2] (as shown in Figure 2(a)) or inferring nodes and
edges independently (as shown in Figure 2(b)). In Figure 2(a),
the network nodes are already given by some predefined brain
atlas, which are usually extracted by neurology professionals
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Fig. 1. An illustration of the task of brain network discovery.

using anatomical analysis. Besides, the independent inference
framework shown in Figure 2(b) infer the nodes and edges
of the brain network separately. On one hand, it derives the
groups from the time series data. On the other hand, it infers
the edges between these derived groups using the time series
data. Although the above two methods are straightforward and
popular approaches to infer the brain network, they are limited
due to following reasons:

• In edge/link discovery, existing methods, such as the
sparse Gaussian graphical model [3], [4], assume the
nodes/groups are given. However, the given groups may
be inferred anatomically and contain subregions that are
each characterized by different functional connectivity
patterns. It may limit the quality and utility of the inferred
network.

• In node/group discovery, existing methods, such as k-
means [5] and spectral clustering [5], usually infer
groups without considering edges/links or assume that the
edges/links are given. However, in brain imaging data, the
edges/links are usually not given and should be derived
from the data. Inferring the group without considering the
edges/links may lead to unsatisfactory results.

• In both methods shown in Figure 2(a) and 2(b), once the
groups are derived, it is difficult or impossible for one
to improve it based on edges/links discovered in latter
stages.

• Due to the existence of the log determinant in the group
graphical Lasso problem, it is computationally expensive
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Fig. 2. Comparison of different brain network inference methods. (a) inference with known groups; (b) independent inference; (c) the proposed collective
discovery of brain network.

to solve the corresponding maximum likelihood problem.
Thus, a coherent method which can infer both nodes and

edges simultaneously is desired to address the aforementioned
issues. In this paper, we propose such a method called SGGL,
which is illustrated in Figure 2(c), to infer brain network
collectively by alternating optimizing the process of node
inference and edge inference. In SGGL, the inferred edges
(links) are used to further update the groups (nodes). We
build an iterative algorithm using alternating optimization. Our
proposed method leverages the synergy of group inference
and link inference, which can improve the quality of the
inferred brain network. The major contributions of this work
are summarized as follows:

• We identify the limitations of existing methods for brain
network discovery. We show that the node discovery
and edges discovery should be considered together and
inferred simultaneously.

• We propose a coherent data-driven method that can dis-
cover nodes and edges of the brain network collectively.

• We propose a screening strategy to reduce the time cost
of solving the group graphical Lasso problem.

• We evaluate the proposed model using both synthetic data
and real-world ADHD-200 data. Results demonstrate the
effectiveness of the proposed methods.

II. NETWORK DISCOVERY

Throughout this paper, R denotes the set of all real numbers,
Rn stands for the n-dimensional euclidean space. The set of
all m × n matrices with real entries is denoted as Rm×n.
All matrices are written in bold format. All sets are written
in calligraphical format. We write X ≻ 0 to denote that X
is positive definite. We write tr(·) to refer the trace of a
matrix, which is defined to be the sum of the elements on
the main diagonal of the matrix. We use det(X) to denote
the determinant of a real square matrix X. Suppose X is
a square matrix, DiagMat(X) denotes the matrix formed by
retaining the elements on the main diagonal of X and set other
elements to 0. The important notations used in this paper are
also summarized in Table I.

Assume we are given a p-variate normal observations
X ∈ Rn×p, where n denotes the number of samples and p

denotes the number of variables. The n samples have mean
of µ and covariance of Σ. Thus, we have the formulation
x(1), . . . ,x(n) ∼ N (µ,Σ). We can assume µ = 0 without
losing generality, the problem of estimating the inverse of
covariance matrix Θ ≈ Σ−1 from X can be cast as follows
[3], [4]

argmin
Θ≻0

− log detΘ+ tr(SΘ) + λ||Θ||1 (1)

Eq. (1) is also known as Graphical Lasso (GLasso), where
S = 1

nXXT is the empirical covariance matrix and ℓ1
regularization is posed to encourage sparsity (λ is the pa-
rameter to control the sparseness of estimated matrix). Note
that Eq. (1) is convex and can be solved by various dual
methods [3], [4], [6] and primal methods [7], [8]. In this paper,
we consider a variation of GLasso, which desires block-wise
sparse estimation of Σ−1:

argmin
Θ≻0

− log detΘ+ tr(SΘ) +
∑
i,j

λij ||{ΘGi,Gj}||F (2)

where Gi is the set of indices for all the elements in group
i. And we use D = {G1, . . . , GL} to denote the set of all
such groups, where L is the total number of groups. Without
losing generality, we pose separate regularizer λij for each
group pair (Gi, Gj).

A. Link Inference

We first assume that the groups D are given and to solve
Eq. (2). Let f(Θ) = − log detΘ+tr(SΘ). We can replace the
non-differentiable regularization term with a linear function.
To do this, we introduce an additional variable hij for each
group pair (Gi, Gj), then Eq. (2) is equivalent to

argmin
Θ≻0,h

f(Θ) +
∑
i,j

λijhij , s.t. hij ≥ ||ΘGi,Gj ||F (3)

where h = (h11, h12, . . . , hLL). We note that each constrain in
(3) is actually an ℓ2 norm cone [9]. Thus, Eq. (3) can be solved
by the spectral projected-gradient (SPG) method [10]. To solve
Eq. (3), SPG needs to compute the minimizer iteratively as
follows

Θt+1 = PC(Θt − α▽f̃(Θ)) (4)



TABLE I
IMPORTANT NOTATIONS.

Symbol Definition
p the number of variables or objects
n the number of samples

X ∈ Rn×p n observations of p-variate Gaussian distribution
Σ ∈ Rp×p The covariance of p-variate Gaussian distribution
S ∈ Rp×p The empirical covariance matrix
Θ ∈ Rp×p The true precision matrix of a network
Θ̂ ∈ Rp×p The estimated precision matrix of a network

L the number of groups
Gi the set of indices in group i

D = {G1, . . . , Gk} the set of group indices sets
DiagMat(·) the matrix obtain by only retaining the elements on the diagonal of ·

λ,λij the regularization terms

where f̃(Θ) = f(Θ)+
∑

i,j λijhij , α is the maximal step size
selected by non-monotonic Armijo backtracking line search
[11] and PC is the Euclidean projection onto a closed convex
set C:

PC(x) = argmin
y∈C

||x− y||F (5)

where C = {Θ|hij ≥ ||ΘGi,Gj ||F } for our problem. It is
usually computationally expensive to solve problem (5) [12].
Fortunately, since groups in Eq. (3) are non-overlapping with
each other, so each projection can be solved independently. For
any given variable hij of group pair (Gi, Gj), the projection
has closed form solution [13], [9] as follows

PC(x, hij) =


(x, hij), if ||x||F ≤ hij ,

(x̂, ĥij), if ||x||F > hij ,
||x||F + hij > 0,

if ||x||F > hij ,
(0, 0), ||x||F + hij ≤ 0.

(6)

where x̂ = x
||x||F

||x||F+hij

2 and ĥ =
||x||F+hij

2 . Accordingly,
the sub-problem Eq. (4) can be solved in O(|Θ|) using
Eq. (6). Note that in Eq. (3), Θ is constrained to be positive
definite, it is proved that one can always find such step size
α satisfying the constraint [7]. The algorithm is summarized
in Alg. 1.

Algorithm 1 SPG Method for Solving Eq. (3)
Require: S,D = {G1, . . . , GL},λ = {λij |i, j =

1, . . . , L}, itermax

1: Initialize Θ0 ← (DiagMat(S))−1, iter ← 0
2: Project the initial estimation Θ0 ← PC(Θ0)
3: f̃t ← f̃(Θ0) , g̃t ← ▽f̃(Θ0)
4: repeat
5: Initialize α using Barzilai-Borwein step size
6: Choose the α by performing the non-monotonic

Armijo backtracking line search
7: Compute the new projection Θt+1 ← PC(Θt − αgt)

using Eq. (6).
8: Compute the new objective function f̃t+1 ← f̃(Θt+1)
9: Compute the new gradient g̃t+1 ← ▽f̃(Θt+1)

10: until iter = itermax or convergence
11: Return Θt+1

B. Group Inference

Group inference can be done by applying clustering meth-
ods such as k-means directly on the p-variate normal ob-
servations X, but it is difficult for one to refine the groups
afterwards. We notice that the output of the Gaussian graphical
model can be viewed as a similarity matrix or affinity matrix,
which can be used as the input for spectral clustering [14].
The similarity matrix is defined as a symmetric matrix S̃,
where S̃ij ≥ 0 measures the similarity between variable i
and variable j.

Spectral clustering requires all elements in the affinity
matrix to be non-negative. Thus, an thresholding can be done
after we obtain the estimated precision matrix Θ̂, one simple
thresholding function is

Ω(Θ̂) = abs(Θ̂) (7)

where abs(·) produces the absolute value for each element in
Θ̂.

C. Collective Network Discovery

Algorithm 2 SGGL (Spectral Group Graphical Lasso)
Require: S, k, λ,λ, itermax

1: Initialize Θ0 ← GLasso(S, λ)
2: Initialize D0 ← SpectralClus(Ω(Θ0), k)
3: Initialize iter ← 0
4: repeat
5: Update Θt+1 ← SPG(S,Dt,λ) using Algorithm 1

with screening
6: Update Dt+1 ← SpectralClus(Ω(Θt+1), k)
7: until iter = itermax or convergence
8: Return Θt+1,Dt+1

In this section, we present the proposed SGGL method.
Without the group information given a priori, we first utilize
the Gaussian graphical model to infer an initial network in
which each variable itself is a group. We do this by assuming
the network is sparse, so it is equivalent to solve Eq. (1).
Given the empirical covariance matrix S and the regularization
parameter λ1, the estimated precision matrix Θ0 can be
derived by applying existing GLasso algorithm. In the next
step, we first transform Θ0 using thresholding function Ω(·),



and then apply widely used spectral clustering on Ω(Θ0) to
obtain the initial group D0. In the iterative part, SGGL first
updates the estimated precision matrix by solving Eq. 2 with
group information given by D0. Then it updates the estimated
group by applying spectral clustering on the updated precision
matrix. This process is repeated until the algorithm converges
or the maximum number of iterations is reached. Generally,
one can set λij = λ to assign the same regularization
term for every group pairs in D. However, one can penalize
each group separately by assigning a regularization vector
λ = {λij |i, j = 1, . . . , L} to the SGGL method. This can
be useful in various circumstances, for example, one may
want to assign different magnitude of regularization on the
off-diagonal blocks and diagonal blocks to encourage different
sparsity between groups and within. The convergence check
can be performed in several ways. We choose to compute the
update of the precision matrix in each iteration as

up = ||Θt+1 −Θt||F (8)

In our implementation, the iterative procedure stops when
up ≤ 10−5. The SGGL algorithm is summarized in Alg. 2.

D. Screening
Due to the existence of the log determinant, it is computa-

tionally expensive to solve the penalized log likelihood model
in Eq. (2) or Eq. (3) by applying Algorithm 1 directly. The
screening strategy has commonly been used to reduce the size
of optimization problems as well as the computational time for
solving the problems. In [15], Kolar et al. proposed a sufficient
condition for the solution of (2) to be block diagonal:

||SGi,Gj ||F ≤ λ, ∀Gi ⊆ C
(λ)
l , Gj ⊆ C

(λ)
l′ , l ̸= l′, (9)

where C
(λ)
1 , . . . , C

(λ)
N are the block structures of the optimal

solution to (2) with regularization term equals to λ, SGi,Gj

denotes the sub-matrix of the empirical covariance matrix
S, and Gi is the i-th group of features. We utilize the
sufficient condition to derive the screening rule for (2) as
follows. We first compute the empirical covariance matrix
S from the data. Then we define the group-based F-norm
matrix S(F ), where each entry S

(F )
ij = ||SGi,Gj ||F . Given

λ = {λij |i, j = 1, . . . , L}, we perform a thresholding on the
entries of S(F ) as

E
(λ)
ij =

{
1, if |S(F )

ij | > λij

0, otherwise
(10)

to obtain the graph edge skeleton E(λ). Similarly, E(λ) defines
a symmetric graph on nodes V ′ = {1, . . . , L} given by
G(λ) = (V ′,E(λ)) , where each node actually stands for a
group of features. In order to find the connected components
of G(λ), we apply DFS algorithm to decompose it into N ′

isolated parts: G(λ) =
∪L

ℓ=1 G
(λ)
ℓ . Since each component G(λ)

ℓ

is corresponding to a block structure C
(λ)
l in the optimal

solution Θλ of (2), we can conclude that ΘCλ
l ,Cλ

l′
= 0

for all l ̸= l′. Thus, one can instead solve (2) by deriv-
ing ΘCλ

1 ,Cλ
1
, . . . ,ΘCλ

N′ ,C
λ
N′

independently, which are much
smaller problems compared to the original one.

III. EXPERIMENTAL EVALUATION

A. Synthetic Data with Ground-Truth

We first evaluate our model using synthetic data, where
ground-truth is available. We follow the approach in [16]
to generate the synthetic precision matrix. Particularly, we
first generate block diagonal matrix Θ with p features and
L diagonal blocks (groups), each block ΘGi,Gi is of size
p/L×p/L and has random sparsity structures. We control the
density of each block on diagonal to be 0.7 ± 0.1, and then
we add off-diagonal blocks to Θ as follows to simulate the
interconnections between groups. We first select βL(L− 1)/2
pairs of groups randomly, where β is the parameter of inter-
connection density. We control the density of each off-diagonal
block to be about 0.3 ± 0.05. Given the precision matrix Θ,
we draw r samples from the Gaussian distribution to compute
the empirical covariance matrix.

Three synthetic precision matrices and empirical covariance
matrices are generated using the parameters as follows

• Dataset 1(Weak Interconnections) : p = 50, L = 5, β =
0, r = 40, 60, . . . , 200.

• Dataset 2(Moderate Interconnections): p = 50, L =
5, β = 0.15, r = 40, 60, . . . , 200.

• Dataset 3(Strong Interconnections): p = 50, L =
5, β = 0.45, r = 40, 60, . . . , 200.

In all three datasets, the same group index is used:

Gi = {10i− 9, . . . , 10i}, i = 1, . . . , 5 (11)

For each ground-truth precision matrix, we randomly draw r
samples 20 times, where r varies from 40 to 200 with a step
size of 20.

On edge detection, we compare SGGL with two baseline
methods:

• GLasso : The graphical lasso method [3].
• k-means + GGL: A pipeline method, which first per-

forms k-means clustering on the time series data to derive
the groups, then applies group graphical Lasso with the
inferred groups to obtain the estimated precision matrix.

On group detection, we compare SGGL with two clustering
methods: k-means and spectral clustering. Both methods are
widely used baselines in the literature [5].

To evaluate the quality of edge detection. We follow [16]
to define the accuracy and F1 score of edge detection as
Accuracy = nd

ng
, F1 =

2n2
d

nand+ngnd
where nd is the number

of true edges detected by the algorithm, ng is the number of
true edges and na is the total number of edges detected. We
control the number of edges detected by all compared methods
to be similar.

To evaluate the quality of group inference, we follow [17]
to use normalized mutual information (NMI) score and purity
score. Higher NMI score or higher purity score indicates better
quality of group detection.

Figure 3 shows the comparison between SGGL and graph-
ical lasso in terms of edge detection. The left column shows
the sparsity patterns of ground truth of Dataset 1 and Dataset 2
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Fig. 3. Comparison between SGGL and Graphical Lasso in terms of edge detection. Left: the ground truth precision matrices; middle: the precision matrices
estimated by Graphical Lasso; right: the precision matrix estimated by SGGL . Upper: the precision matrices inferred for Dataset 1; Bottom: the precision
matrices inferred for Dataset 2

described above. The middle column denotes the sparsity
patterns detected by graphical lasso. The right column presents
the sparsity patterns detected by the proposed SGGL method.
For each dataset, λ is adjusted to make sure that both graph-
ical lasso and SGGL generates similar number of nonzero
entries in the estimated precision matrix. We can observe that
compared to the graphical lasso method, the proposed SGGL
method generates a more interpretable results with much less
noises. These results demonstrate that SGGL outperforms
graphical lasso in terms of detecting true edges in the precision
matrix.

Figure 4 shows the results of the accuracy and F1 scores
on edge detection. We can observe that in terms of accuracy,
the proposed SGGL method outperform other two baselines
on all datasets consistently, and in terms of F1 score, SGGL
achieves competitive or better performance compared to the
baselines. SGGL does especially well on data set 3, when
the connections are denser. These results demonstrate that
SGGL outperforms the compared methods in terms of edge
detection. Figure 5 shows the comparison of SGGL , k-means
and spectral clustering in terms of NMI score and purity
score. We can observe from Figure 5 that for dataset 2 and
dataset 3, SGGL achieves higher or equal NMI score and
purity score than two baselines consistently. For dataset 1 with
weak interconnections, SGGL performs slightly worse than k-
means, but the results are very close. It indicates that SGGL
may not have much advantages compared to k-means when

the components in the network are very isolated, but such case
is relatively rare in real-world dataset such as social networks
and brain networks. Thus, these results demonstrate that SGGL
outperforms state-of-art clustering baselines in terms of group
detection.

B. Real World ADHD-200 Data

We evaluate our method using real world fMRI data from
ADHD-200 project1. ADHD (Attention Deficit Hyperactivity
Disorder) is a chronic condition that affects more than 5%
- 10% of school-age children. The annual costs on treating
ADHD exceeds 36 billion in the United States. The dataset we
used is distributed by nilearn2. There are in total 40 subjects
in the dataset, 20 of which are labeled as ADHD, and the
other 20 subjects are labeled as TDC. The rsfMRI scan of
each subject in the dataset is a series of snapshots of 3D brain
images of size 61× 73× 61 over ∼180 time steps.

The first set of experiments are performed on the default
mode network (DMN) of human brain. DMN is a network
of interacting brain regions known to have activity highly
correlated with each other and distinct from other networks
in the brain. In details, we extract time series from four pre-
defined regions in DMN: Posterior Cingulate Cortex, Left
Temporoparietal junction, Right Temporoparietal junction and
Medial prefrontal cortex. We regard each DMN region as a

1http://fcon 1000.projects.nitrc.org/indi/adhd200
2http://nilearn.github.io/
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Fig. 4. Comparison in terms of accuracy and F1 score on detecting true edges. Sample size varies from 40 to 200 with a step size of 20.

sphere and the radius is set as 8 mm for all regions. We apply
SGGL, k-Means and Spectral clustering on the time series
data without the group information, to see how well can each
method recover the known groups. In Figure 6, we show the
comparison of clustering performance in term of NMI score.
We compare the proposed SGGL method with k-Means and
spectral clustering using RBF affinity. One can observe that
SGGL achieves better NMI score compared to the other two
methods, indicating SGGL improves group detection in brain.
In Figure 7, we present the connectivity pattern of ADHD
group derived by SGGL method. The network discovered for
TDC group is very similar, indicating that the strength of DMN
is not affected by ADHD, which may be due to the simplicity
of the DMN itself. From Figure 7, we can observe that all four
regions in DMN are strongly connected to each other, which
is consistent with the essences of DMN. Thus, we can see the
effectiveness of the proposed SGGL method in discovering the
groups and connectivity of brain.

The second set of experiments aims at discovering the
networks of the entire brain. We use the AAL brain-shaped
mask (provided by neurology professionals) to extract the
voxels that are considered parts of the brain. We follow [18] to
use a a middle slice of these scan for the ease of presentation.
Each of the scans can be represented by about 3200 voxels.
In Figure 8, we present the comparison of the group inference
results between SGGL and spectral clustering. Figure 8(a) and
8(b) show the groups inferred by the proposed SGGL for
TDC and ADHD respectively; Figure 8(c) and 8(d) show the
groups inferred by spectral clustering. We can observe that
the results of spectral clustering are very scattered and it is
difficult to capture the difference between the results of TDC
and ADHD from the figures. However, the proposed SGGL

method presents a much interpretable results compared to the
ones of spectral clustering.

In Figure 9, we show the comparison of time cost on running
SGGL with and without using a screening strategy. We observe
that the proposed screening strategy can achieve about 40%
time gain on ADHD-200 dataset, while time cost of screening
itself is negligible.

IV. RELATED WORKS

This work is related to brain parcellation and barin connec-
tivity analysis, we discuss them briefly in this section.

It is an important and challenging task to infer the brain
parcellation. Early work in this direction have focused on
anatomical atlases. Although one can learn much from these
anatomical brain mapping, no functional or structural con-
nectivity information was used to construct them. Thus, it
is highly possible that regions in anatomical atlases contain
subregions characterized by different functional and structural
patterns. Recent studies in brain parcellation have mainly
focused on data-driven methods, which aimed at obtaining
brain mapping directly from the neuroimaging data. [19] have
studied the problem of identifying brain regions that are related
to Alzheimer’s disease from multi-modality neuroimaging
data. [20] have focused on parcellating the brain into a set of
regions that are functionally homogeneous. Specifically, the
voxels within a region should share similar time courses or
generating similar functional connectivity patterns [21]. On
the other hand, researchers also have focused on preserving
the spatial contiguity of the parcellated regions to ensure the
interpretability of them [22], [23], [5]. [24] have summarized
the commonly used clustering techniques for inferring brain
mapping and makes comparison among them with various
evaluation metrics. Especially, [5] have proposed to employ
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Fig. 5. Comparison in term of NMI and Purity on detecting groups. Sample size varies from 40 to 200 with a step size of 20.
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Fig. 7. The connectivity of DMN of ADHD group discovered by SGGL. All
regions in the DMN are strongly connected to each other, which is consistent
with the essence of DMN.

spatially constrained spectral clustering to build brain atlas
from fMRI data.

The task of brain connectivity analysis has two major
branches: (1) effective connectivity estimation; (2) functional
connectivity estimation. For the first type of connections, many
of researchers have focused on using structure learning method
for Bayesian Networks to obtain a directed network from fMRI
data [25]. As to the estimation of functional connectivity, there
are a few simple approaches such as hierarchical clustering,
pairwise correlations and independent component analysis
(ICA), a comprehensive survey in these directions can be

found in [26]. The sparse Gaussian graphical models (sGGM)
[3], [4], [27], [28], [29] have been very popular for discov-
ering large-scale brain connectivity recently due to their solid
probabilistic foundation for distinguishing direct connections
from indirect connections (i.e. conditional independent).

Deriving the mapping and connectivity of the brain is cru-
cial, but the brain network system itself is complex structured.
For instance, neurons are usually organized into multiple much
larger regions and complex interconnections exist between
and within those regions. In this paper, we propose to use
spectral clustering to discover the underlying cohesive regions,
and the group constrained graphical model is employed to
reconstruct the connectivity. Our model is different from [30]
in several ways. Specifically, the node discovery methods
proposed in [30] is semi-supervised and supervised, while our
SGGL method is unsupervised. In [30], they discovered the
edges within a network by estimating the correlations between
nodes instead of inferring direct connections as we do in the
sparse Gaussian Graphical Model (sGGM).

V. CONCLUSION

In this paper, we study the brain network discovery problem.
By using the inferred networks as the input of group inference,
we propose an iterative method, SGGL, to discover groups
and links in the brain network simultaneously. Empirical
experiments on both synthetic data and ADHD-200 dataset
demonstrate that SGGL is promising in discovering meaning-
ful brain networks.
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