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Abstract

Sparse inverse covariance estimation has attracted lots
of interests since it can recover the structure of the un-
derlying Gaussian graphical model. This is a useful tool
to demonstrate the connections among objects (nodes).
Previous works on sparse inverse covariance estimation
mainly focus on learning one single type of connections
from the observed activities with a lasso, group lasso
or tree-structure penalty. However, in many real-world
applications, the observed activities on the nodes can be
related to multiple types of connections. In this paper,
we consider the problem of learning heterogeneous con-
nectivities from the observed activities by incorporating
meta paths extracted from a heterogeneous information
network (HIN), an information network with multiple
types of nodes and links, into the conventional graphi-
cal lasso framework. We aim at extracting the strongest
type of relation between any pairs of entities and ignor-
ing other minor relations. Specially, we introduce two
novel kinds of constraints: meta path constraints and
exclusive constraints, which ensure the unique type of
relation among a pair of objects. This problem is highly
challenging due to the non-convex optimization. We
proposed a method based upon the alternating direc-
tion method of multipliers (ADMM) to efficiently solve
the problem. The conducted experiments on both syn-
thetic and real-world datasets illustrate the effectiveness
of the proposed method.

1 Introduction

In recent years, undirected graphical models have
gained prominence since they provide a natural way
to model the complex interactions among a set of ran-
dom variables. For example, a group of genes tends
to work together if they perform the same biological
functions, and there are some regulatory relationships
among genes [5]. By treating genes as nodes and their
relationships as the corresponding edges, the biological
system can be represented as a graph. However, in many
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Figure 1: An illustration of learning heterogeneous con-
nections from the observed activities of the focused ob-
jects (nodes) by incorporating a heterogeneous informa-
tion network.

applications, the structure of the graph is unknown and
must be inferred from the limited observations.

One of the widely used graphical models is the
Gaussian Graphical Model (GGM) [21], which assumes
the variables follow a multivariate Gaussian distribu-
tion. In the framework of GGM, the problem of learn-
ing the structure of a graphical model is equivalent to
estimating the inverse of the covariance matrix, also
referred to as the precision or concentration matrix,
since the non-zero pattern of this precision matrix cor-
responds to the edges in the underlying graph struc-
ture [21]. It is natural to enforce the sparseness on the
precision matrix to get an interpretable graph and main-
tain the low model complexity. For this purpose, some
researchers considered the sparse inverse covariance ma-
trix estimation problem [1,8,15,17,18,22], which is also
known as Graphical Lasso (GLasso).

However, most learning algorithms suffer from a
very high computational complexity and are impractical
when the number of nodes exceeds tens of thousands.
So some additional information should be considered
to reduce the search space. M. Grechkin et al. [11]
proposed a new method called Pathway Graphical Lasso
(PathGLasso), inspired by the fact that in the biological
system, a pair of genes will not be connected if they do
not participate together in any of the cellular processes,
typically referred to as pathways. By taking advantage
of the domain knowledge, this method gains great
acceleration and gives a more meaningful result.

Conventional approaches for graphical lasso mainly
focus on learning one type of relation from the node
activities. However, in many real-world application,
the node activities can usually be explained by multiple



types of relations among the nodes. For example, in
bibliographic networks, the publication activities can
be influenced by multiple types of relationships among
the authors. In Figure 1, the publication activities of
Author 2 can be not only influenced by the “co-author”
relation with Author 3, but also be affected by the
“attend-same-conference” relationship with Author 1.

With the recent advance in data collection tech-
niques, many real-world applications are facing large
scale heterogeneous information networks (HIN) with
multiple types of objects interconnected through multi-
ple types links, which involves a significant amount of
information. With the help of the additional informa-
tion, we can infer the connections between the objects
from different perspectives.

In this paper, we study the problem of learning het-
erogeneous connectivities in a HIN from the observed
activities, where the goal is to learn which pairs of ob-
jects have connections, and in the meantime identify the
main sources of these connections in HIN. This problem
is very important in various applications, e.g., learn-
ing the main reason for gene regulatory relationships in
biological networks and learning the main types of re-
lationships between users in social networks. This is a
challenging problem due to the following reasons:
• Large Search Space: There are tens of thousands
of objects in a real-world network, and there are vari-
ous types of possible relations among them. We need
to prune the impossible links in advance to reduce the
search space. For example, in Figure 1, if we only care
about the three simple relations listed in the right part
of figure, we can assert that Author 1 and 4 cannot be
connected in the learned graph because they do not have
any of the relations.
• Exclusive Relations: We aim at extracting the
strongest type of relations between a pair of objects and
ignoring other minor relations. For example, in Figure
1, Author 2 and Author 3 not only are co-authors but
also have attended the same conferences and share the
same topics. In that case, we only care about the main
reason for their connection, i.e., co-author relation, ig-
noring all other types of links. This means we need to
ensure there is at most one type of relations among a
pair of objects in the result. Maintaining the exclusive
relations is a challenging task.

To address the above issues, we incorporate meta
paths extracted from a HIN into the conventional graph-
ical lasso framework. We present a novel method
called Heterogeneous Graphical Lasso (HeteGLasso),
and solve it using the non-convex alternating direc-
tion method of multipliers (ADMM) [2,7]. HeteGLasso
estimates multiple precision matrices simultaneously
by incorporating the objects’ individual activities and
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Figure 2: Comparison of three different methods for
graphical lasso. (a) Graphical Lasso [8] only uses the
observed activities and outputs a sparse precision ma-
trix. (b) Pathway Graphical Lasso [11] further consid-
ers the pathway-based prior. Pathways constrain the
nonzero pattern in the precision matrix. (c) Heteroge-
neous Graphical Lasso incorporates a HIN to learn mul-
tiple types of connections simultaneously. Meta path-
based constraints regulate at which position elements
can be nonzero, while exclusive constraints ensure the
unique type of the edge between a pair of objects.

the external heterogeneous information network. Each
learned graph corresponds to a certain kind of relations.
The learned precision matrices have property that there
is at most one nonzero element among all matrices at
each off-diagonal position (i, j). This means multiple
precision matrices and corresponding graphs can be eas-
ily combined as a graph with multiple types of edges.
We compare and contrast the inputs and outputs of 3
methods in Figure 2. As we can see, compared to the
conventional GLasso, PathGLasso uses domain knowl-
edge as a prior, which can be seen as a bipartite graph,
while HeteGLasso uses a HIN as a prior.

The main contributions of our paper are as follows:
• We study the problem of learning heterogeneous
connectivities in a HIN and formulate the problem as
Heterogeneous Graphical Lasso. We use meta paths
extracted from the HIN to define the path groups
among objects and introduce meta path constraints in
HeteGLasso. Further, meta path-based dissimilarity is
used to infer the element-wise regularization matrices.
• To extract the strongest relations among objects, we
introduce the exclusive constraints in HeteGLasso using
cardinality function, which ensure the uniqueness of link
between a pair of objects in the learned graph.
•We propose an efficient algorithm to solve HeteGLasso
using non-convex ADMM. The experimental results
show the effectiveness of our method.



Table 1: Mathematical Notation.

Notation Description

< The space of real numbers

Sn+ The space of n× n symmetric positive semi-definite matrices

Sn++ The space of n× n symmetric positive definite matrices

A � 0 A is symmetric and positive definite

‖A‖1,Λ Element-wise `1 norm, i.e., ‖A‖1,Λ =
∑

ij Λij |Aij |
‖A‖F Frobenius norm of matrix A, i.e., ‖A‖F =

√∑
ij A

2
ij

A
(·)
ij A vector consisting of elements among all A(k) at position (i, j), i.e.,

(
A

(1)
ij , A

(2)
ij , . . . , A

(K)
ij

)
card(x) Cardinality function on a vector x, which gives the number of nonzero elements in x

sgn(c) Sign function on a scalar c, sgn(c) = 1 for c > 0, sgn(c) = −1 for c < 0 and sgn(c) = 0 for c = 0
ΠD(x) The projection of a vector x on set D

2 Problem Formulation

In this section, we briefly formulate the problem of
learning heterogeneous connections and the concepts
of heterogeneous information network. Mathematical
notations used throughout the paper are summarized
in Table 1.

2.1 Preliminaries

2.1.1 Graphical Lasso. Given a set of samples
drawn i.i.d. from an n-variate Gaussian distribution
with zero mean and covariance matrix Σ ∈ Sn++:

xi ∼ Nn(0,Σ), i = 1, 2, . . . ,m,

the task of graphical lasso is to estimate its precision
matrix Θ = Σ−1 ∈ Sn++ under the prior assumption
that Θ is sparse. To achieve a sparse estimate, a number
of works [1,8,15,17,18,22] have considered the following
Graphical Lasso (GLasso) problem:

min
Θ

− l(S,Θ) + ‖Θ‖1,Λ,

where S = 1
m

∑m
i=1 xix

T
i ∈ Sn+ is the sample covariance

matrix, Λ is an `1 regularization parameter matrix with
Λij > 0 for all off-diagonal elements and Λij > 0 for all
diagonal elements, and l(S,Θ) = log det Θ − Tr(SΘ) is
the log-likelihood function. Note that the constraint
Θ � 0 is implicit because of the convention that
log det(Θ) = −∞ when Θ � 0.

2.1.2 Heterogeneous Information Network.

Definition 1 (Heterogeneous Information Network
[16, 19]). A heterogeneous information network is a
special kind of information network with multiple types
of nodes and multiple types of links. It can be rep-
resented as a graph G = (V, E). V denotes the set
of nodes, which involves w types of objects: V(1) =

{v(1)
1 , . . . , v

(1)

|V(1)|}, . . . ,V
(w) = {v(w)

1 , . . . , v
(w)

|V(w)|}, where

v
(i)
p denotes the p-th object of type i. E ⊆ V × V de-

notes the links between the objects in V, which includes
multiple types of links.

Each type of links starting from a source node of
type s and ending at a target node of type t corre-

sponds to a binary relation R(st), where R
(st)
pq holds

if v
(s)
p and v

(t)
q are linked by a link of type R(st). For

example, in Figure 1, there are 4 types of nodes:
author, paper, conference, topic, and 3 types of re-
lations(links): author → paper, paper → conference,
paper → topic.

Definition 2 (Meta Path [16,19]). A meta path P =

V (i1) R(i1i2)

−−−−→ · · · R
(il−1il)

−−−−−−→ V (il) is defined as a sequence
of relations in the network schema.

For simplicity, we can use object names to denote
the meta path if there exist no multiple relations
between the same pair of types: P = V(i1) · · · V(il).
We say v1v2 · · · vl is a path instance of meta path
V(i1) · · · V(il), if vp ∈ V(iq) ∀ q.

2.2 Heterogeneous Graphical Lasso. First, we
give the definition of the path group:

Definition 3 (Path Group). Given a meta path P =
V(s) · · · V(t) defined on G = (V, E), where nodes set V =⋃
i V(i). A path group g

(t)
j is a set of nodes with type

V(s), and we say v
(s)
i ∈ g

(t)
j if there exists a path instance

v
(s)
i · · · v

(t)
j of P . A meta path P can induce |V(t)|

(maybe overlapping) path groups g
(t)
1 , . . . , g

(t)

|V(t)|.

For example, in the toy bibliographic network
shown in Figure 1, meta path author → paper →
topic induces 2 path groups of authors correspond-
ing to 2 topics: {A2, A3, A4}, {A3, A4}, and author →
paper induces 5 path groups corresponding to 5 papers:
{A1}, {A2, A3}, {A2, A3}, {A3}, {A4}, where Ai denotes
the i-th author.

Given a heterogeneous information network
G = (V, E) consisting of different types of objects, i.e.,
V =

⋃
i V(i), we now focus only on one certain type of

objects V(s) with size |V(s)| = n, where each object has
its own observed activities, and therefore, the sample



covariance matrix S ∈ Sn+ can be computed. We call
this kind of objects as focused objects. Besides, we
are also given K meta paths starting from V(s), which
induce the K sets of path groups. Though we can
learn a precision matrix over V(s) to determine which
pairs of objects have direct connections, it is hard to
tell what is the main reason for these connections.
To address this problem, we can learn K precision
matrices Θ(1), . . . ,Θ(K) simultaneously corresponding
to K meta paths, with exclusive constraints: at the
same off-diagonal position (i, j), there is at most one
non-zero element among K precision matrices. We
formulate the problem of Heterogeneous Graphical
Lasso as follows:

min
Θ(1),...,Θ(K)

K∑
k=1

(
−l(S,Θ(k)) + ‖Θ(k)‖1,Λ(k)

)
s. t. Θ

(k)
ij = 0, ∀(i, j) /∈ P(k)

card(Θ
(·)
ij ) 6 1, ∀i 6= j,

(2.1)

where (i, j) ∈ P(k) if there exists a path group of k-th

meta path, such that v
(s)
i and v

(s)
j are all in this group.

The first group of constraints Θ
(k)
ij = 0, ∀(i, j) /∈

P(k), k = 1, 2, . . . ,K means that a pair of variables
can be connected to each other only if they co-occur
in at least one path group. Note that card(·) is a non-
convex and non-smooth function, which leads the entire
problem hard to solve. In the next section, we propose
an algorithm to solve Problem 2.1 approximately and
efficiently.

3 Proposed Method

In this section, we propose an ADMM based algorithm
to solve Problem 2.1.

3.1 Nonconvex ADMM. Note that without
card(·) constraints, Problem 2.1 can be decomposed
into K independent parts and each part is actually
a Pathway Graphical Lasso problem [11]. Define
functions φk : Sn++ → <∪ {−∞,∞} as follows

φk(Θ(k)) =


− l(S,Θ(k)) + ‖Θ(k)‖1,Λ(k)

if Θ
(k)
ij = 0,∀(i, j) /∈ P(k),

+∞ otherwise.

minφk(·) is convex since it is the minimization of a
convex function with equality constraints. Now the
Problem 2.1 is equvilent to

min
Θ(1),...,Θ(K)

K∑
k=1

φk(Θ(k))

s. t. Θ
(·)
ij ∈ D,∀i 6= j,

(3.1)

Algorithm 1 Algorithm for solving Problem 2.1

Require: S,Λ,P(k), τ > 0
1: Initialize W (k) = I, V (k) = O
2: repeat
3: Convex proximal step: Solve Problem 3.2 to

update Θ(k)

4: Projection: W
(·)
ij := ΠD(Θ

(·)
ij + V

(·)
ij )

5: Dual update: V (k) := V (k) + Θ(k) −W (k)

6: until convergence
7: return Θ(k)

where D = {x| card(x) 6 1}.
Problem 3.1 consists of a convex objective function

and non-convex constraints, which can be solved heuris-
tically via non-convex ADMM [2, 7]. The algorithm is
described in Algorithm 1.

The non-convex ADMM consists of 3 steps inside
each iteration: The first convex proximal step involves
solving the relaxed problem with additional Frobenius
norm,

min
Θ(1),...,Θ(K)

K∑
k=1

[
φk(Θ(k)) +

τ

2
‖Θ(k) −W (k) + V (k)‖2F

]
,

(3.2)
where τ > 0 is the model parameter, W (k)’s and
V (k)’s are auxiliary variables with initial value W (k) =
I, V (k) = O. This problem can be solved separately
with respect to k and is discussed in detail in next
subsection.

The second step W
(·)
ij := ΠD(Θ

(·)
ij + V

(·)
ij ) is to

project the variables onto the non-convex set D, which

can be done easily in our setting: W
(·)
ij keeps the element

of the largest magnitude in (Θ
(·)
ij + V

(·)
ij ) and zeroes out

the rest. The final step is to update dual variables.

3.2 Inner Subproblem. To finish Algorithm 1,
we need to optimize the separable convex optimiza-
tion Problem 3.2. Consider the following subprob-
lem(suppressing superscript k for simplicity):

min
Θ

− l(S,Θ) + ‖Θ‖1,Λ +
τ

2
‖Θ−W + V ‖2F

s. t. Θij = 0, ∀(i, j) /∈ P,
(3.3)

which is a graphical lasso problem with additional
Frobenius norm and meta path constraints.

Now we take advantage of our prior knowledge: a
pair of variables can be connected to each other only
if they co-occur in at least one path group. Following
the method proposed in [11], we iteratively update the
parameters that correspond to one path group, with all
of the other parameters held fixed. After re-arranging



the variables, Θ takes the form:

Θ =

 A B 0
BT C D
0 DT E

 ,
where Θ1 =

[
A B
BT C

]
contains the parameters in

the current path group, Θ2 =

[
C D
DT E

]
contains the

parameters in the rest of the path groups, and C
corresponds to the overlapping part.

To update A,B,C with D,E fixed, the Problem 3.3
is reduced to

min −l(S1,Ω)+‖Ω+∆‖1,Λ1
+
ρ

2
‖Ω+∆−W1 +V1‖2F ,

(3.4)

where Ω = Θ1 − ∆, ∆ =

[
0
D

]
· E−1 ·

[
0, DT

]
, and

S1,W1, V1 are the corresponding part of S,W, V . We
refer readers to [11] for more details about how to
calculate E−1 efficiently.

Problem 3.4 is a graphical lasso with shift and
extra Frobenius penalty, which means some classical
algorithms for solving graphical lasso can be modified to
support our formulation. In this paper, we use ADMM
algorithm again because almost no extra efforts are
needed compared to the conventional problem.

Introducing auxiliary variable Z, Problem 3.4 can
be rewritten as

min
Ω

− l(S1,Ω) + ‖Z + ∆‖1,Λ1 +
τ

2
‖Ω + ∆− T‖2F

s. t. Ω = Z,

where T = W1 − V1 for simplicity.
The scaled augmented Lagrangian [2] for this prob-

lem is given by

Lρ(Ω, Z, U) =− l(S1,Ω) + ‖Z + ∆‖1,Λ1

+
τ

2
‖Ω + ∆− T‖2F

+
ρ

2
‖Ω− Z + U‖2F ,

where ρ > 0 is a model parameter. In each iteration,
the ADMM has the form:

Ω := argminΩ Lρ(Ω, Z, U)

Z := argminZ Lρ(Ω, Z, U)

U := U + Ω− Z

The analytic solution to update Ω is given by [23]:

• Compute the eigendecomposition

QDQT = ρ(Z − U) + τ(T −∆)− S1.
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Figure 3: Relative Errors under different τ .
• Form diagonal matrix D̃ with

D̃ii =
Dii +

√
D2
ii − 4(τ + ρ)

2(τ + ρ)
.

• Let Ω = QD̃QT .

To update Z, we could apply soft-thresholding at
each entry:

Zij = Sλij/ρ(Ωij + ∆ij + Uij)−∆ij ,

where Sλ(t) = sgn(t) max{|t| − λ, 0}.
Different from Problem 2.1, Problem 3.4 is a convex

problem, which means ADMM is guaranteed to con-
verge to the optimal value regardless of the choice of
ρ, which only affects the speed of the convergence in
the convex cases. However, the parameter τ of Problem
2.1 must be chosen carefully, since non-convex ADMM
may not converge to the global minimum and whether
it converges and the quality of approximate solution all
depend on the the choice of τ [2,7]. Figure 3 shows the
relative errors under different τ ’s. We can observe that
when τ is too large or too small, the algorithm cannot
converge in a finite number of steps. In this paper, we
let τ = 1 in all experiments.

3.3 The Choice of Λ. Though many methods for
solving graphical lasso support element-wise regulariza-
tion ‖Θ‖1,Λ, it is still hard to determine Λij for each pair
of objects. But with the heterogeneous information, we
may infer Λij from the network, e.g., any nonnegative
pairwise dissimilarity metrics can be used as regulariza-
tion weight. In this paper, we let

Λ
(k)
ij =

α

(Sim
(k)
ij )1/β

, (3.5)

where k = 1, 2, . . . ,K and Sim
(k)
ij ∈ [0, 1] is the PathSim

[19] score between objects (i, j) under the k-th meta
path. α > 0 is a global parameter and β > 1 is used
to smooth the similarity score. If two objects do not
co-occur in any path group, their PathSim score will be



0, and thus Λ
(k)
ij = +∞ forcing the Θ

(k)
ij = 0, which

is consistent with explicit meta path constraints. In
Section 4.5, we show that the choice of β merely affects
the performance of our method, so we can simply let
β = 1. Now we only have one global regularization
parameter α to deal with.

4 Experiments

4.1 Data Collection. We evaluate the proposed
method on both synthetic datasets and real-world
datasets. The generation method of synthetic data is
as follows:

Given the number of objects n, the number of meta
paths K, the number of path groups of each meta
path p, and the load factor η > 0, we first generate
K partial commuting matrices [19] PCn×p by drawing

each element PC
(k)
ij from Poisson distribution PC

(k)
ij ∼

Poisson(ηp ). We call η load factor because it controls

the degree of overlapping between path groups, and [11]
shows that higher load factor leads to longer running
time.

It is easy to see that nonzero elements in each
column of partial commuting matrix belong to the same
path group. Besides, we can get K similarity matrices
[19] by letting commuting matrix C(k) = PC ·PCT , and

then Sim
(k)
ij =

2C
(k)
ij

C
(k)
ii +C

(k)
ij

.

Now we generate a sparse positive definite matrix
Σ̃−1 as the unprocessed precision matrix, then let Σ̃−1

ij =

0 if Sim
(k)
ij = 0 for all 1 6 k 6 K. Since zeroing out

some elements may cause Σ̃−1 losing definiteness, we let
Σ−1 = Σ̃−1 + µI, such that the minimum eigenvalue of
Σ−1 is 1. By sampling xi ∼ Nn(0,Σ), i = 1, . . . ,m, we
can get the sample covariance matrix S.

We also use 2 real-world datasets in the experi-
ments:
• DBLP1: The first dataset is a subset of DBLP bib-
liographical network. We extracted 20 conferences and
top-5000 authors among 4 areas2 from 2006 to 2015.
The target object is author. After removing the stop
words in paper titles, we get 679 frequent terms as a
new type of objects in the network. Meanwhile we use
these terms as the vocabulary to generate bag-of-words
representations as authors’ activities. The schema of
DBLP network is shown in Figure 4(a).
• SLAP+AML: The second dataset is a bioinformatic
dataset SLAP [3], which is a heterogeneous network

1http://dblp.uni-trier.de
2Data Mining: KDD, PKDD, ICDM, SDM, PAKDD;

Database: SIGMOD Conference, VLDB, ICDE, PODS, EDBT;

Information Retrieval: SIGIR, ECIR, ACL, WWW, CIKM; and
Machine Learning: NIPS, ICML, ECML, AAAI, IJCAI.
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Figure 4: The network schema

composed by over 290K nodes and 720K edges. As
shown in Figure 4(b), the SLAP dataset contains in-
tegrated data related to chemical compounds, genes,
diseases, side effects, pathways etc.. In this network,
our target object is gene and their activities come from
another two gene expression datasets of AML (acute
myeloid leukemia) studies [9, 12] used in [11].

4.2 Compared Methods. In order to validate the
effectiveness of our proposal, we test with following
methods:
• Heterogeneous Graphical Lasso (HeteGLasso): We
first test our proposed method, which takes sample
covariance matrix S and the set of partial commuting
matrices PC(1), . . . , PC(K) as inputs, and returns K
precision matrices Θ(1) . . .Θ(K). The Λ(k)’s are inferred
from meta paths using Equation 3.5 with the global
regularization parameter α.
• Graphical Lasso(GLasso): This method only takes S
as input, and returns a precision matrix Θ. Due to lack
of meta paths information, we simply set Λij = α, where
α is a global parameter.
• Pathway Graphical Lasso (PathGLasso): This method
takes S and one partial commuting matrix PC(k) as
input, and then returns Θ(k) corresponding to the k-th
meta path. The Λ(k) is inferred via Equation 3.5 with
global parameter α. By running this method K times,
we get K independent precision matrices Θ(1) . . .Θ(K).

4.3 Experiment Settings. First, we want to test
whether these 3 methods can correctly recover the
nonzero pattern. This can be seen as a binary classi-
fication problem if we merge all edges in Θ(1) . . .Θ(K)

given by PathGLasso or HeteGLasso regardless their
types. For this purpose, we follow [24] to define F1
score as an evaluation metric:

F1 =
2× n2

d

nand + ngnd
,

where nd is the number of true edges detected by
the algorithm, ng is the number of edges in the true
precision matrix, and na is the total number of detected
edges. The larger the value, the better the performance.



(a) Ground Truth (b) GLasso (c) PathGLasso (d) HeteGLasso
Figure 5: The learned precision matrices of 3 methods. (a) Red and blue dots denote nonzero elements under
different meta paths. (b) The precision matrix given by GLasso is noisy. (c) Two precision matrices given by
PathGLasso correspond to different meta paths and cannot be combined due to overlap. (d) The combined
precision matrix given by HeteGLasso recovers the origin matrix best.
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Figure 6: Experimental Results(n = m = 500, η = 1, p = 10). “U” and “M” in parentheses denote “Unified” and
“Merged” respectively; ↑ indicates the larger the value the better the performance; ↓ indicates the smaller the
value the better the performance.

Besides, we want to test whether PathGLasso and
HeteGLasso can determine the edges types correctly,
which can be treated as a multi-label classification
problem with K + 1 labels by letting

labelij =

{
{0} if Θ

(k)
ij = 0,∀k,

{k|Θ(k)
ij 6= 0} otherwise.

Similarly, we let the ground truth to be

label?ij =

{
{0} if Σ−1

ij = 0,

{argmaxk Sim
(k)
ij } otherwise.

Note that labelij given by HeteGLasso and the ground
truth label?ij must contains only one element.

Considering not all elements facing misclassifica-
tion, to avoid overestimation, we only care elements at

(i, j) ∈ X , where X = {(i, j)| card(Sim
(·)
ij ) > 2}. We

now have the following evaluation criteria to verify the
multi-label classification performance:
• mirco-F1 [10]: is the harmonic mean of micro average
of Precision and Recall.

micro-F1 =
2×

∑
(i,j)∈X |label?ij ∩ labelij |∑

(i,j)∈X |label?ij |+
∑

(i,j)∈X |labelij |
.

The larger the value, the better the performance.
• Hamming loss [4]: evaluates the symmetric difference
between true labels and predicted labels.

HLoss =
1

|X |
∑

(i,j)∈X

1

K + 1
|label?ij ⊕ labelij |,

where ⊕ is the symmetric difference of two sets. The
smaller the value, the better the performance.

4.4 Experiment Results. To illustrate the outputs
of these 3 methods first, we manually generate a toy
example with 2 meta paths and show the results in
Figure 5. As we can see, GLasso gives a noisy result
because of the lack of prior knowledge. PathGLasso
gives two independent precision matrices but recovers
more elements than we want. Meanwhile our method
gives a much better result with benefit from card(·)
constraints.

Our first experiment evaluates the ability of algo-
rithms to recover the edges in the precision matrix. For
a fair comparison, the parameter α is tuned so that
the number of edges detected by algorithms is near the
number of edges in the true precision matrix. The re-
sult is shown in Figure 6(a). We can observe that both
PathGLasso and HeteGLasso have good and stable per-
formance on this task, while lacking the prior knowledge
results in poor performance of GLasso.

Then we study whether PathGLasso and Hete-
GLasso can classify the edge types correctly. Consid-
ering labelij given by PathGLasso may contains more
than one elements, we tune α for PathGLasso in two
different ways:

1. PathGLasso(Unified): The number of edges be-
tween a pair of objects (i, j) is |labelij |. The α
is tuned so that the sum of the number of edges



1 2 3 4 5 6 7 8 9 10 ∞
β

0.30

0.35

0.40

0.45

0.50

0.55

m
ic

ro
-F

1

PathGLasso(U)

PathGLasso(M)

HeteGLasso

(a) micro-F1 score ↑

1 2 3 4 5 6 7 8 9 10 ∞
β

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

H
a
m

m
in

g
 L

o
ss

PathGLasso(U)

PathGLasso(M)

HeteGLasso

(b) Hamming Loss ↓
Figure 7: The influence of β(n = m = 500, η = 1, p =
10,K = 5).
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Figure 8: A subgraph of DBLP identified by Hete-
GLasso.∑

ij |labelij | is near the number of edges in the true
precision matrix times K.

2. PathGLasso(Merged): The number of edges be-
tween a pair of objects (i, j) is 1 if labelij 6= {0},
otherwise 0. The α is tuned so that the number
of edges is near the number of edges in the true
precision matrix.

As we can see from Figure 6(b), the micro-F1 scores
of both unified and merged PathGLasso drop quickly as
K increases, while HeteGLasso remains high score. As
for Hamming loss in Figure 6(c), HeteGLasso is better
than PathGLasso consistently.

4.5 Parameter Study. We may worry that the per-
formance of our method on this synthetic dataset is
gained via using ground truth implicitly (Equation 3.5),

but Figure 7 tells us even using the same Λ
(k)
ij (obtained

at β =∞), HeteGLasso still maintains the good perfor-
mance.

4.6 Case Study. We split the DBLP dataset into
two periods: 2006∼2010 and 2011∼2015 and apply
HeteGLasso to these two parts of dataset. Figure 8
shows a subgraph of the learned DBLP network. We can
observe that the relations between authors had changed.
For example, Jiawei Han and Charu C. Aggarwal were
connected via author → paper → conference because
they had attended the same conferences, but recently
they were connected via author → paper due to their
more frequent cooperation. This means HeteGLasso
successfully captured the relations between authors in
different periods.
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Figure 9: The largest connected component of SLAP
identified by HeteGLasso

Figure 9 shows the largest connected component of
the learned SLAP network, which consists of 166 nodes
and 234 edges. Edges in different colors denote the
different relations. It’s obvious that HeteGLasso can
capture the different relations among different pairs of
genes.

5 Related Work

To obtain a sparse estimate of the precision matrix, nu-
merous researchers have considered the minimum neg-
ative log-likelihood estimation using `1 regularization
[1, 8, 15, 17, 18, 22], also referred to as graphical lasso.
Most of these methods suffer from intensive computa-
tion (typically cubic time complexity with respect to the
number of nodes). [18] and [22] proved that under cer-
tain conditions, a single graphical lasso problem can be
decomposed into several smaller sized and independent
problems corresponding to the non-overlapping diagonal
blocks of the true precision matrix. Pathway Graphical
Lasso (PathGLasso) [11] provides an efficient framework
dealing with overlapping blocks if overlapping structure
information is given in advance. If there is only one
kind of meta path in our method, HeteGLasso degener-
ates into PathGLasso.

There are some prior works [6,13,14,20,24] on learn-
ing multiple precision matrices simultaneously from
multiple different but related sets of observations. All
these methods assume that the jointly learned precision
matrices (graphs) should share the similar structure.
For example, [13] proposed a method to learn common
substructures among multiple graphs. [6] used ADMM
to estimate multiple precision matrices with pairwise
fused lasso penalty and group lasso penalty. [24] using
sequential fused penalty to encourage adjacent graphs to
be similar. The biggest difference between these meth-
ods and our proposal is that we learn multiple precision
matrices from only one set of observations but with meta
path and exclusive constraints, which ensures that each



learned graph corresponds to a certain kind of relation
and is different from the others. All learned graphs can
be combined into one meaningful graph with multiple
types of links.

6 Conclusion

In this paper, we first incorporate heterogeneous infor-
mation networks into the conventional graphical lasso
framework and propose the Heterogeneous Graphical
Lasso to learn multiple types of connections. We intro-
duced the meta path constraints and cardinality con-
straints to ensure the unique type of relation among
a pair of objects. The regularization parameter ma-
trices are inferred from meta paths. Our proposal can
be solved via non-convex ADMM, and experiments con-
ducted on synthetic datasets demonstrated the effective-
ness of HeteGLasso and the case studies showed that our
method can output a meaningful result.
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