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Abstract—Recommender systems have attracted much atten-
tion in last decades, which can help the users explore new items
in many applications. As a popular technique in recommender
systems, item recommendation works by recommending items to
users based on their historical interactions. Conventional item
recommendation methods usually assume that users and items
are stationary, which is not always the case in real-world applica-
tions. Many time-aware item recommendation models have been
proposed to take the temporal effects into the considerations
based on the absolute time stamps associated with observed
interactions. We show that using absolute time to model temporal
effects can be limited in some circumstances. In this work, we
propose to model the temporal dynamics of both users and
items in item recommendation based on their life cycles. This
problem is very challenging to solve since the users and items
can co-evolve in their life cycles and the sparseness of the data
become more severe when we consider the life cycles of both
users and items. A novel time-aware item recommendation model
called BiCycle is proposed to address these challenges. BiCycle
is designed based on two important observations: 1) correlated
users or items usually share similar patterns in the similar stages
of their life cycles. 2) user preferences and item characters can
evolve gradually over different stages of their life cycles. Extensive
experiments conducted on three real-world datasets demonstrate
the proposed approach can significantly improve the performance
of recommendation tasks by considering the inner life cycles of
both users and items.

Index Terms—Item Recommendation; Collaborative Filtering;
Life Cycle; Evolution Inference; Data Mining

I. INTRODUCTION

Collaborative filtering (CF) [1]–[8] is widely used technique

for item recommendation, which recommends items to users

based on their historical interactions, such as ratings, reviews,

transactions. Conventional CF methods usually assume that

the preferences of users and the characteristics of items are

stationary, as shown in Fig. 2a. However, this is not always

the case in the real-world systems. First of all, the interests of

users may evolve over time. People may like cartoon movies

during their childhood and early teen years, but may not like

them after they enter college. Moreover, even the characters of

items are more stable than user interests, they can subject to

change due to various external factors. For instance, in movie

recommendation system, the popularity of a movie may exhibit

a pattern resembles the well-known hype curve [9], in which

the popularity increases rapidly after release until it reaches

the peak, then it decreases to its lowest point gradually, at last
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Fig. 1: An illustration of item recommendation with user and

item life cycles. The red dotted lines denote the current time

in the absolute time-line.

it bounds up to the average level and becomes relatively stable

over time, as shown in Fig. 1.

Given its significance, the modeling of temporal effects of

collaborative filtering has been extensively studied. Remark-

ably, the latest progress in the Netflix Prize contest is attributed

to a temporal model [3]. Some other works have been proposed

in this direction [6]–[8], in which the researchers show the

superiority of incorporating temporal effects into the CF

models. Conventional methods for temporal CF mainly focus

on exploiting the change of user’s interests or item characters

over the absolute time-line, as illustrated in Fig 2b. However,

in many real-world applications, users start their involvement

at different time and items are released at different time,

which makes it challenging to learn a unified time-aware

model for the system. Furthermore, the users and items are

usually following their internal evolving patterns, which are

called life cycles. They can exhibit similar preferences or

characters in similar stages of their life cycles. We illustrate a

toy example of movie recommendation systems in Fig. 1, in

which three users are at different stages of their life cycles. All

of them share similar evolving patterns with respect to their

life cycles. The three movies in Fig. 1 are also at different

stages of their life cycles, and their evolving patterns obey
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Fig. 2: Comparison of different recommendation models. The static CF model in (a) considers all observed ratings together

and ignore the time. The temporal CF model in (b) considers learning separate factors of users and items in different time

windows. Our model illustrated in (c) considers the inherent life cycles of users and items, and it learns factors for different

stages of life cycles for users and items with temporal regularizations.

the hype curve. It is easy for any CF model to group these

users and movies together by simply looking at their historical

ratings. However, even all three users shows some interests to

romance movies, we may not want to recommend Movie 3

to them since it is no longer a popular choice. Similarly, we

may not want to recommend any romance movies to User

C since he already lost the interest to the movie genre. For

User A who is still young on romance, we can recommend

Movie 1 and Movie 2 to him with high confidence since

we believe his life cycle pattern will be similar to User B

and User C (to have high interests in romance in the near

future). For User B, the situation is similar except Movie 1

may be a dubious choice since they are very likely to miss each

other’s peak. It is obvious that other time-aware CF models

which do not consider the life cycle will generate different

recommendations, for example, they may not recommend any

romance movies to User A since A resembles User C at current

time and C no longer watches any romance movies. Hence, it

is beneficial to model the life cycles in collaborative filtering.

In this paper, we study the problem of time-aware item
recommendation with life cycles, where the goal is to learn

a unified time-aware item recommendation model by con-

sidering the inherent life cycles of users and items. This

problem is very natural and important due to the universal

existence of life cycles in various applications, e.g., life cycles

of scholars and research topics (academia), life cycles of

consumers and merchandises (on-line business) etc. Despite

the significance of it, collaborative filtering with life cycles is

highly challenging, as summarized below.

Life Cycle versus Wall Time: Users and items may exhibit

dramatically different characteristic along the wall time (abso-

lute time-line), but they may behave similar in each stage of

their life cycles (relative time-line). Exploiting such similarity

across the relative time-line may help the item recommen-

dation task. However, it is still an open problem that how

to incorporate the concept of life cycles into recommendation

models given all the data distributed on the absolute time-line.

It is even more challenging when we attempt to model the life

cycles of both users and items simultaneously.

Sparsity: Considering the large number of users and items in

a real-world application, the data of interactions between users

and items are relatively sparse throughout the absolute time-

line. The sparseness aggravates the prediction problem when

we allocate the data into different stages of life cycles to learn

separate factors for each life stage. If we do not have enough

data in some life stages, there may not be enough information

for us to learn the patterns for these life stages, which may

lead to inaccurate recommendations.

In this paper, we propose a novel method called BiCycle to

address the above issues, as illustrated in Fig. 2c. To the best

of our knowledge, the collaborative filtering problem has not

been studied in the context of life cycle in the literature.

II. PROBLEM FORMULATION

In this section, we first introduce the preliminary and the

formulation of the conventional collaborative filtering. Then

we extends the problem to the time-aware variation. Through-

out this paper, we use capital alphabet in boldface, e.g., X,

to denote a matrix, and xij refers to the entry of X at i-th
row and j-th column. We use lowercase alphabet in boldface,

e.g., x, to denote a column-based vector, and xi refers to the

i-th entry of x. We use ||X||F to denote the Frobenius norm

of X. We use calligraphic letters to denote sets, e.g., A,B, C.

A. Collaborative Filtering

In a recommender system, there are m users and n items.

Each observed feedback is a tuple (i, j, rij) denoting the

rating assigned to item i by user u, where the user index

i ∈ {1, . . . ,m}, the item index j ∈ {1, . . . , n}, and the rating

values rij ∈ R. We use Ω = {(i, j)|rij is observed} to denote

the the set of observed user-item interactions. The goal of

conventional collaborative filtering problem is to estimate the

unobserved rating {rij |(i, j) /∈ Ω} based on the observed

ones. However, the feedbacks are implicit [4], [5] rather than
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TABLE I: Notations
Symbol Definition

R the original rating matrix

R(pq) the rating matrix of p-th user life stage and q-th item life stage

U(p) the user latent factor matrix of p-th life stage

V(q) the item latent factor matrix of p-th life stage

R̃(pq) the smoothed rating matrix of p-th user life stage and q-th item life stage
λ the regularization parameter
α the variance regularization parameter
β the fused regularization parameter
μ the user interest decay parameter
π the item interest decay parameter
M the total number of user life stages
N the total number of item life stages
D the number of factors in the matrix factorization model
m the number of users in the system
n the number of items in the system

explicit in many applications, e.g., , users’ video viewing and

product purchase history. In such cases, the value of a rating

rij does not deliver any preference information of user i with

respect to item j, and it only denotes an interaction between

them is observed or not observed. In such cases, the goal of

collaborative filtering is to estimate {rij ∈ R|(i, j) /∈ Ω} based

on the observed interactions, where each rij is a real value

indicating how likely user i will consume item j in the near

future.

B. Matrix Factorization

One of the most successful approaches to collaborative

filtering problem is based on a matrix factorization model

[1], [2]. Matrix factorization models map uses and items to

a joint low-rank latent factor space, such that the feedbacks

are modeled as the inner products in that space. In this type

of models, each user i is assigned a vector ui ∈ R
D, and

each item j is assigned a vector vj ∈ R
D, where D is the

dimensionality of the latent factor space. The rating of item j
assigned by user i is predicted using the inner product of the

corresponding vectors in the latent factor space as r̂ij = u�i vj .

If we use U = (u�1 , . . . ,u
�
m) to denote the latent factor matrix

of all users, and V = (v�1 , . . . ,v
�
n ) to denote the latent factor

matrix of all items in the system. Then the predicted matrix

can be computed as the product of the corresponding vectors

in the latent factor space: R̂ = U�V, which is a dense matrix

with all unobserved values in original rating matrix R filled.

In the setting of implicit feedbacks, U and V can be learned

by solving the following optimization problem [4], [5]:

minimize
U,V

1

2
||R−U�V||2F +

λ

2
(||U||2F + ||V||2F ) (1)

where λ is the parameter controls the extent of regularization,

and can be tuned by cross-validation. It is worth noting that

Eq. (1) is not a convex problem with respect to U and V, but

it is bi-convex. Hence, one can either use alternating least

squares (ALS) or stochastic gradient descent to obtain the

solutions U and V towards Eq. (1).

C. Time-aware CF

In conventional CF problems, we do not consider temporal

information about the interactions or we assume that the data

do not contain such information. However, in many real world

applications, the time stamp associated with each ratings,

reviews or visiting records is very useful and informative,

and should not be ignored. In this section, we extend the

problem of collaborative filtering to time-aware version. To

formally define the problem of time-aware CF, we first give

the definition of time window as follows.

DEFINITION II.1 (Time Window): A time window is a left-

closed-right-open time interval [ts, te) on the absolute time-

line with the start time stamp ts and the end time stamp te.

DEFINITION II.2 (Time-aware CF Problem): In a recom-

mender system with m users and n items, given a set of

historical user-item feedbacks F = {(i, j, rijt)|(i, j) ∈ Ω, t ∈
[ts, te)}, one want to estimate the the preference of the users

towards the same set of items in the next time window [te, tf ),
i.e., what items will a user consume in the future time span

[te, tf ). So the goal of time-aware CF problem is equivalent to

infer a m×n preference matrix R̂, where r̂ij ∈ R denotes the

preferences of user i towards item j in the future time window

[te, tf ). In the context of implicit feedbacks, r̂ij corresponds

to the confidence level on user i will consume item j in the

future time window [te, tf ). Thus, if r̂ij > r̂ij′ , it indicates

that user i is more likely to consume item j compared to item

j′ in [te, tf ).

It is straightforward that the static matrix factorization

models we discussed in Sec. II-B can be applied to infer

the future preference matrix R̂ if we simply ignore the time

stamps. However, the prediction results fails to capture the

dynamic temporal effects exist in users as well as in items.

III. PROPOSED METHOD

In this section we introduce the proposed model BiCycle.

In Sec. III-A, we first introduce the concept of life cycle. In

Sec. III-B, we address the sparsity problem of the life-cycled

matrix using exponential smoothing. Finally, in Sec. III-C, we

discuss the temporal regularizations we propose and put all

pieces together to present our solution.

A. Life Cycle
A major drawback of the conventional matrix factorization

models is that they fail to consider temporal effects. One may
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propose to simply partition the observed data by time window

and learn a separate model using the data in each partition.

However this approach not only suffers from severe sparsity,

but isolates the interactions from different time periods, which

makes the model difficult to capture the evolution patterns. As

we discussed in Sec. I, similar users may share similar patterns

during the same stage of their life cycles, and their evolution

trend may also resemble each other. Similarly, similar items

may also share similar patterns of popularity, availability and

demand across life stages. Thus, it is beneficial to exploit the

co-evolution patterns of users and items across the stages of

their life cycle. In this work, we propose to model the co-

evolution of users and items in a system using the concept of

life cycles, which is formally defined as follows.

DEFINITION III.1 (Life Cycle): In a system with users and

items, we assume there are life cycles exist in both user side

and item side, where each user has at most M life stages

his/her life cycle, and each item has at most N life stages in its

life cycle. And the concept of life cycle refers to the entire life

span of users and items included the unobserved (future) time.

Thus, given a certain time point, some users/items may already

experienced all M or N life stages, while other users/items

may only experienced partial life stages.

DEFINITION III.2 (Life Stage): There are multiple life stages

for a user or item. The �-th life stage of user/item i is denoted

by time window [t
(i)
s� , t

(i)
e� ). Specially, we consider the M -

th stage of user i or N -th stage of item j as a open time

window [t
(i)
sM ,∞) or [t

(j)
sN ,∞) with no explicit end time. This

is sensible since in real-world evolution patterns, the user or

item usually enter a stable stage eventually at some time point,

e.g., the stable stage in the hype curve.

There are many ways to determine the life stages of users

and items. In this paper, we use a fixed length for the first

M − 1 or N − 1 stages, with the length of each user stage

equals to lu and the length of each item stage equals to li.
We left the M -th or N -th stage with open end. Note that the

determination of life stages is orthogonal to our model, any

other sensible approach can be adopted with minor efforts.

Thus, for any user in the system, we can allocate their

historical interactions into at most M bins, with each bin

corresponds to a life stage. Similarly, for any item in the

system, we can distribute their historical interactions into at

most N stages.

In the static matrix factorization method, the historical feed-

backs are cast into a m×n matrix R. Similarly, by considering

the life cycles of both users and items, we can cast the same

historical feedbacks into M×N separate matrices of the same

size, i.e., {R(pq) ∈ R
m×n|p = 1, . . . ,M, q = 1, . . . , N}.

Hence, R(pq) contains all the ratings given by users of p-th

life stages to items of q-th life stages, i.e.,

r
(pq)
ij =

{
rijt, ∃rijt ∈ F where p = SU (i, t), q = SI(j, t).
0, otherwise

(2)

where SU (i, t) is a function computes which life stage is user

i in at the time stamp t, while SI(j, t) computes which life

stage is item j in at time stamp t. In this paper, we define

SU (i, t) as follows

SU (i, t) = min(M, � t− t
(i)
0

lu
�) (3)

where t
(i)
0 is the time stamp of first observed interaction of

user i. And SI(j, t) follows the same form. The reason that

we determine the life stage based upon the first observed

interaction time is two-folds. First, the age of the users and

items is not always available, relying on this kind of side

information hurts the generality of the model. Second, the

latent characteristic of users or items are not necessarily tied

to their age, but to their experience, which can be learned from

the historical interactions of them. For example, a user’s taste

on movies evolves while he/she watches more movies, and a

movie’s popularity and status also changes while it receives

more reviews and criticism.

Hence, given the historical feedbacks of a system, we can

cast them into a set of life-cycled preference matrices {R(pq)}.
One can employ the matrix factorization model discussed in

Sec. II-B to learn a latent factor matrix of users for each stage,

i.e., {U(1), . . . ,U(M)}, and a latent factor matrix of items for

each stage, i.e., {V(1), . . . ,V(N)}. Although this approach

can capture users and items patterns at different life stages,

it has some limitations. Firstly, it suffers from severe sparsity,

since the original data is sparse and we allocate them into

M ×N separate matrices of original size. With such sparsity,

it is difficult for factorization model to learn meaningful latent

factors in each life stage. Secondly, it does not force any

regularization in the temporal dimension, which makes the

model highly possible to over-fitting the data.

B. Smoothing

To address the first issue we discussed above, we need to

alleviate the sparseness of R(pq). Inspired by the works of

modeling interest forgetting in music recommendation [10],

we build a smoothed counterpart for each R(pq) as follows.

R̃(pq) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
R(pq), if p = q = 1.

R(pq) + μR̃((p−1),q), if q = 1 and p ≥ 2

R(pq) + πR̃(p,(q−1)), if p = 1 and q ≥ 2

R(pq) + μR̃((p−1),q) + πR̃(p,(q−1)), otherwise
(4)

where μ ∈ [0, 1] and π ∈ [0, 1] are two parameters to control

the rate of interest decay over the user life stages and item

life stages respectively. This strategy extends the well-known

exponential smoothing [11] in time series studies to fit our

application. The intuitions behind this strategy are: (1) the

interactions in previous life stages will affect the consumption

or interactions in the future stages. (2) interactions in earlier

stage has less impacts on current or future life stages, which

can also be explained by people tends to forget their interest far

back in early stages of life. (3) the impact decays exponentially
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over life stages, which is a general assumption of many

temporal models.

By applying the smoothing as shown in Eq. (4), we obtain

a set of denser preference matrices {R̃(pq)}. Then we can

perform the matrix factorization on {R̃(pq)} to learn M user

factor matrices and N item factor matrices, which can be

formulated as the following optimization problem.

min
{U(p)},{V(q)}

1

2

M∑
p=1

N∑
q=1

||R̃(pq) −U(p)(V(q))�||2F

+
λ

2
(
M∑
p=1

||U(p)||2F +
N∑
q=1

||V(q)||2F )
(5)

This problem is an analog of Eq. (1), the major difference

here is that we are trying to learn M separate user factor

matrices and N separate item factor matrices instead of one for

each. Even though the smoothing alleviate the sparsity of the

preference matrices, it is still possible that the model in Eq. (5)

over-fits the data due to the lack of temporal regularizations.

Algorithm 1 BiCycle Algorithm

Require: R,M,N, λ, α, β, π, μ
1: Build the life-cycled preference matrices {R(pq)}(p =

1, . . . ,M, q = 1, . . . , N) using Eq. (2) and Eq. (3).

2: Obtain the smoothed preference matrices R̃(pq) using

Eq. (4).

3: Build the temporal variance regularization using Eq. (6).

4: Build the temporal fused regularization using Eq. (7).

5: Solving the Eq. (8) using Eq. (9) and Eq. (11) to obtain

{U(p)}(p = 1, . . . ,M) and {V(q)}(q = 1, . . . , N).
6: R̂(pq) ← U(p)V(q).

7: Return {R̂(pq)},

C. Temporal Regularization

In this section, we consider two types of temporal regu-

larizations for our model. The first one is called variance
regularizer, which has the following form,

Lv(U
(1), . . . ,U(M),V(1), . . . ,V(N))

=
M∑
p=1

||U(p) − 1

m
Jm×mU(p)||2F

+
N∑
q=1

||V(q) − 1

n
Jn×nV(q)||2F

(6)

where Jm×m corresponds to the all-ones matrix of size m×m.

The geometrical meaning of 1
mJm×mU(p) is simply a matrix

with each row equals to the mean of all rows of U(p). Thus,

||U(p) − 1
mJm×mU(p)||F is the magnitude of the variance of

the rows in U(p). Since each row in U(p) corresponds to a

user’s feature vector in the p-th life stage, and each row in

V(q) refers to a item’s feature vector in the q-th life stage,

it is obvious that Eq. (6) denotes the overall variance of user

features and item features inside each life stage of them. When

minimizing the objective function shown in Eq. (5), we also

want to keep this variance regularizer fairly small to force the

users and items sharing similar patterns and characters inside

the same life stage, as we discussed in Sec. I.
The second regularizer we consider is called fused regu-

larizer, which is named after fused Lasso. This regularizer is

formulated as follows

Lf (U
(1), . . . ,U(M),V(1), . . . ,V(N))

=
M−1∑
p=1

||U(p+1) −U(p)||2F +
N−1∑
q=1

||V(q+1) −V(q)||2F
(7)

It is obvious that the fused regularizer computes the difference

between any two feature matrices of two continuous life

stages. By adding this regularizer to the minimization problem,

it encourages the change of any two continuous life stages of

users and items to be small. In other words, the user features

and item features are usually changing gradually instead of

rapidly.
When we consider the two types of regularizations together

with the major objective, we can adopt the standard approach

of adding weight parameters for the regularizers to merging

them into one problem. Accordingly, the BiCycle optimization

problem is as follows

min
{U(p)},{V(q)}

1

2

M∑
p=1

N∑
q=1

||R(pq) −U(p)(V(q))�||2F

+
λ

2
(
M∑
p=1

||U(p)||2F +
N∑
q=1

||V(q)||2F )

+
α

2
Lv(U

(1), . . . ,U(M),V(1), . . . ,V(N))

+
β

2
Lf (U

1), . . . ,U(M),V(1), . . . ,V(N))

(8)

where λ keeps the same meaning as in Eq. (1), α ≥ 0 controls

the extent of variance regularizer and β ≥ 0 controls the level

of fused regularizer. The values of these parameters should be

determined using cross-validation. Obviously, this problem is

not convex to U(1), . . . ,U(M) and V(1), . . . ,V(N). However,

it is convex and differentiable when we fix all but one of

them. Hence, we can utilize gradient descent to solve Eq.( 8)

iteratively.

D. Optimization
In this section, we briefly discuss the gradient computation

in each iteration of our algorithm. Suppose we denote the

objective function in Eq. (8) for short as F ({U(p)}, {V(q)}).
At the c-th iteration of the algorithm, we first fix all other

variables to update U(p). We can derive the gradient of F
over U(p) as

∂F ({U(p)}, {V(q)})
∂U(p)

=
N∑
q=1

U(p)(V(q))�V(q) − R̃(pq)V(q)

+ λU(p) + α(U(p) − 1

n
Jm×mU(p)

+ C
(9)
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where C is defined as follows

C =

⎧⎪⎨
⎪⎩
β(U(p+1) −U(p−1)), if 1 < p < M.

β(U(p+1) −U(p)), if p = 1

β(U(p) −U(p−1)), if p = M

(10)

Thus, the updated U(p) can be obtained by

U(p) = U
(p)
old − ζ

∂F ({U(p)}, {V(q)})
∂U(p)

(11)

where ζ > 0 is the step size parameter which is usually

small. After U(p) is updated, we follow the similar approach

to update other variables until the algorithm converges. The

situation of fixing all other variables and update V(q) is similar

and symmetrical to above, so we omit the detailed derivation

for succinct. To summarize, the pseudocode of our proposed

bicycle algorithm is presented in Algorithm 1.

E. Complexity Analysis

We provide a brief complexity analysis of the proposed

BiCycle Algorithm. The time complexity for each iteration

of BiCycle is O(MN |Ω|D2 + MN(m + n)D3), where M
and N usually do not change when m or n increases and

D 	 min(m,n). Thus, the time complexity can be denoted

as O(|Ω|D2+(m+n)D3), which is similar to the conventional

ALS algorithm for collaborative filtering [12].

The space complexity is O(MNmn+DMm+DNn). Due

to the same reason, we can simplify it as O(mn). Furthermore,

considering the sparsity of the preference matrix, the actual

space usage is far less than that. As we will show latter in

Sec. IV-F, the best choice of M and N is usually small for

all datasets tested, making the proposed algorithm almost as

efficient as the conventional matrix factorization method.

IV. EXPERIMENTS

A. Dataset

In order to validate the performances, we apply our method-

ology to three real-world datasets.

• Epinions [13]: The first dataset is extracted from the

well-known general consumer review site Epinions1,

which was established in 1999. We randomly select 1,000

active users and 1,000 popular items from the raw data,

and the time span of their interactions is from 2001 to

2010. All ratings are binarized to simulate the context of

implicit feedbacks.

• DBLP-Terms [14]: The second dataset is a bibliography

keywords dataset extracted from DBLP2 information net-

work. We select a subset of active authors who published

more than 5 papers in top conferences of four areas3

that related to data mining from 1980 to 2010 and keep

the 1000 top authors. Then we build a stemmed terms

1http://www.epinions.com
2http://dblp.uni-trier.de/db/
3Data Mining: KDD, PKDD, ICDM, SDM, PAKDD; Database: SIGMOD

Conference, VLDB, ICDE, PODS, EDBT; Information Retrieval: SIGIR,
ECIR, ACL, WWW, CIKM; and Machine Learning: NIPS, ICML, ECML,
AAAI, IJCAI.

representation (stop words removed) of all paper titles

of the subset using gensim4. We filter out all terms that

appear less than 20 times to get 847 keywords. The

interactions between authors and terms in each year are

used as implicit ratings.

• ML100K [15]: MovieLens 100K5 is a widely used movie

recommendation dataset that contains 100,000 ratings

from 943 users on 1,682 movies, each user rate at least 20

movies. The time span of this dataset is from Sept. 1997

to Apr. 1998. We divide the data into 29 time windows

of equal length. And all real-valued ratings are binarized

to simulate the context of implicit feedbacks.

B. Compared Methods

In order to demonstrate the effectiveness of our method, the

following baselines and state-of-the-art methods are tested:

• POP [5]: Recommend popular items to users.

• MF [1]: This method is the static matrix factorization

with �2-norm regularization we described in Sec. II-B.

• SVD++ [2]: This is an extended version of matrix fac-

torization method which couples SVD and neighborhood

model together. SVD++ also takes the implicit feedbacks

into consideration.

• TIMESVD [3]: This is a popular state-of-art time-aware

collaborative filtering method that captures temporal ef-

fects by incorporating a time-variant bias for each user

and item at every individual time window.

• ITEMCYCLE [this paper]: This is a degenerated variation

of our proposed method, which only considers the life

cycles of the item side.

• USERCYCLE [this paper]: This is another degenerated

variation of our proposed method, which only considers

the life cycles of the user side.

• BiCycle [this paper]: the proposed BiCycle Algorithm.

C. Experimental Settings

For the purpose of quantitative evaluations, we follow the

standard testing protocol with minor alterations. Given a set

of consumption data in k continuous time windows, we select

some test window 1 < c ≤ k. Then we randomly sample 20%

data in test window c, together with all data in time windows

1, . . . , c− 1 as the training set. The remaining 80% data in c
is used as test set. To ensure reliability, for each dataset, we

choose multiple test windows to run the experiments and report

the results to reflect the overall performance of compared

methods over the time-line. We select the parameters used for

the proposed BiCycle algorithm using grid search on a valida-

tion set. Due to the number of parameters to tune is relatively

large (7 for the BiCycle method), an extensive grid search is

very expensive. We can employ an alternative approach by

fixing other parameters and searching the best values for one

or two target parameters. An extensive parameter study of our

BiCycle algorithm is provided in Sec. IV-F.

4https://radimrehurek.com/gensim/
5http://grouplens.org/datasets/movielens/
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TABLE II: Prec@k (rank) and MRR (rank) of compared methods. D = 10. The best performer is in boldface.

Window 1 Window 2 Window 3 Ave.

Dataset Methods Prec@1 Prec@5 Prec@10 MRR Prec@1 Prec@5 Prec@10 MRR Prec@1 Prec@5 Prec@10 MRR Rank

Epinions

BiCycle 0.0282 (1) 0.0175 (2) 0.0155 (2) 0.0245 (1) 0.0165 (1) 0.0107 (2) 0.0079 (2) 0.0167 (1) 0.0118 (1) 0.0094 (1) 0.0076 (2) 0.0206 (2) 1.5
USERCYCLE 0.0113 (4) 0.0051 (6) 0.0073 (4) 0.0143 (4) 0.0083 (3) 0.0058 (4) 0.0070 (3) 0.0138 (4) 0.0059 (3) 0.0047 (4) 0.0047 (5) 0.0128 (5) 4.1
ITEMCYCLE 0.0141 (3) 0.0079 (4) 0.0056 (5) 0.0128 (5) 0.0041 (4) 0.0025 (7) 0.0041 (6) 0.0078 (6) 0.0059 (3) 0.0094 (1) 0.0053 (3) 0.0179 (3) 4.6

MF 0.0000 (6) 0.0056 (5) 0.0054 (6) 0.0113 (6) 0.0000 (6) 0.0041 (6) 0.0025 (7) 0.0097 (5) 0.0000 (6) 0.0011 (7) 0.0029 (6) 0.0105 (6) 6.0
SVD++ 0.0085 (5) 0.0085 (3) 0.0099 (3) 0.0168 (3) 0.0041 (4) 0.0058 (4) 0.0050 (5) 0.0152 (3) 0.0059 (3) 0.0047 (4) 0.0053 (3) 0.0130 (4) 3.7
TIMESVD 0.0254 (2) 0.0192 (1) 0.0158 (1) 0.0244 (2) 0.0124 (2) 0.0140 (1) 0.0087 (1) 0.0165 (2) 0.0118 (1) 0.0082 (3) 0.0147 (1) 0.0208 (1) 1.5
POP 0.0000 (6) 0.0023 (7) 0.0019 (7) 0.0024 (7) 0.0000 (6) 0.0066 (3) 0.0070 (3) 0.0018 (7) 0.0000 (6) 0.0012 (6) 0.0012 (7) 0.0015 (7) 6.0

DBLP-Terms

BiCycle 0.2874 (1) 0.1767 (1) 0.1336 (1) 0.1434 (1) 0.2995 (1) 0.1753 (1) 0.1286 (1) 0.1408 (1) 0.2680 (1) 0.1658 (1) 0.1198 (2) 0.1358 (1) 1.1
USERCYCLE 0.2781 (3) 0.1749 (3) 0.1286 (4) 0.1365 (3) 0.2930 (3) 0.1622 (4) 0.1220 (4) 0.1352 (3) 0.2576 (2) 0.1603 (4) 0.1198 (2) 0.1317 (3) 3.2
ITEMCYCLE 0.2848 (2) 0.1754 (2) 0.1318 (2) 0.1407 (2) 0.2943 (2) 0.1734 (2) 0.1286 (1) 0.1393 (2) 0.2510 (4) 0.1622 (2) 0.1213 (1) 0.1327 (2) 2.0

MF 0.2741 (4) 0.1762 (4) 0.1306 (3) 0.1357 (4) 0.2878 (4) 0.1698 (3) 0.1234 (3) 0.1352 (3) 0.2522 (3) 0.1608 (3) 0.1172 (4) 0.1294 (4) 3.5
SVD++ 0.1992 (5) 0.1538 (5) 0.1152 (6) 0.1114 (6) 0.1875 (5) 0.1591 (5) 0.1135 (5) 0.1144 (5) 0.2102 (5) 0.1469 (5) 0.1037 (6) 0.1132 (5) 5.3
TIMESVD 0.1738 (6) 0.1441 (6) 0.1178 (5) 0.1143 (5) 0.1836 (6) 0.1445 (6) 0.1111 (6) 0.1115 (6) 0.1800 (6) 0.1396 (6) 0.1064 (5) 0.1120 (6) 5.8
POP 0.0067 (7) 0.0043 (7) 0.0040 (7) 0.0062 (7) 0.0000 (7) 0.0049 (7) 0.0048 (7) 0.0137 (7) 0.0000 (7) 0.0024 (7) 0.0032 (7) 0.0138 (7) 7.0

ML100K

BiCycle 0.2800 (1) 0.2000 (1) 0.1680 (1) 0.1311 (1) 0.3939 (1) 0.3515 (1) 0.3182 (1) 0.2125 (1) 0.3690 (1) 0.3071 (1) 0.2678 (1) 0.1911 (1) 1.0
USERCYCLE 0.2200 (3) 0.1880 (2) 0.1620 (3) 0.1282 (3) 0.3333 (3) 0.3060 (4) 0.2909 (3) 0.2041 (3) 0.3571 (2) 0.2976 (2) 0.2667 (2) 0.1889 (2) 2.7
ITEMCYCLE 0.2800 (1) 0.1880 (2) 0.1640 (2) 0.1296 (2) 0.3484 (2) 0.3242 (2) 0.2954 (2) 0.2118 (2) 0.3214 (3) 0.2833 (3) 0.2583 (3) 0.1868 (3) 2.3

MF 0.2200 (3) 0.1680 (4) 0.1540 (4) 0.1237 (4) 0.3333 (3) 0.3090 (3) 0.2909 (3) 0.1962 (4) 0.2857 (4) 0.2880 (4) 0.2571 (4) 0.1799 (4) 3.3
SVD++ 0.1800 (5) 0.1360 (5) 0.1240 (5) 0.0920 (5) 0.2273 (6) 0.2030 (6) 0.1901 (6) 0.1322 (5) 0.2381 (6) 0.2071 (6) 0.1821 (6) 0.1192 (5) 5.5
TIMESVD 0.1800 (5) 0.1320 (6) 0.1080 (6) 0.0740 (6) 0.3030 (5) 0.2273 (5) 0.2106 (5) 0.1069 (6) 0.2619 (5) 0.2309 (5) 0.2083 (5) 0.1020 (6) 5.4
POP 0.0200 (7) 0.0080 (7) 0.0060 (7) 0.0098 (7) 0.0000 (7) 0.0121 (7) 0.0121 (7) 0.0130 (7) 0.0119 (7) 0.0071 (7) 0.0083 (7) 0.0100 (7) 7.0

D. Evaluation Metric

Three commonly used metrics in information retrieval are

adopted to evaluate the quality of recommendation given

by compared methods. They are Average Recall at Position

k (Recall@k), Average Precision at Position k (Prec@k)

and Mean Reciprocal Rank (MRR). The definitions of these

metrics are as follows

Recall@k =
1

n

n∑
i=1

Hiti(k)

|Qi| (12)

Prec@k =
1

n

n∑
i=1

Hiti(k)

k
(13)

MRR =
1

n

n∑
i=1

1

|Qi|
|Qi|∑
j=1

1

rank ij
(14)

where Qi denotes the set of items consumed by user i in

the test window, Hiti(k) refers to the number of hits in the

top k recommendations of user i given by the model, and

rankij denotes the rank of item j consumed by user i in the

recommendations.

E. Experimental Results

In this section, we summarize our the findings on the

experimental results. Table II presents the results of compared

models in terms of Precision@k scores and MRR score. Fig. 3

shows Recall@k with D = 10 fixed by varying k from 100 to

400. Fig. 4 shows Recall@300 by varying D from 10 to 50.

For the quality of visualization, the curve of POP in all figures

and the curve of TIMESVD in Fig 4c are omitted because their

recall scores are too low.

We first study the effectiveness of BiCycle by comparing

it with two static recommendation methods: MF and SVD++.

Both MF and SVD++ utilize the historical feedbacks without

considering the inherent life cycles in users or items. Table II

indicates that on all three datasets we tested, BiCycle can

achieve much better performances than the MF and SVD++ in

terms of Precision@k scores and the MRR socre. And form

Fig. 3 and Fig. 4, we can observe that BiCycle consistently

outperforms MF and SVD++ in terms of Recall@k scores with

different k. This is because our proposed method BiCycle

consider the temporal dynamics of users and items by using

the concept of life cycles, while the static methods MF and

SVD++ do not. The results suggest that the proposed life cycle

concept could correctly model the temporal dynamics, and it

is a very concise but effective approach.

We further study the effectiveness of BiCycle by comparing

it with a state-of-art time-aware recommendation method

TIMESVD. Table II, Fig. 3 and Fig. 4 suggest that BiCy-

cle achieve compariable or even better performances than

TIMESVD. This is because that TIMESVD models the tem-

poral effects using the absolute timeline, while the proposed

BiCycle uses the concept of life cycles with re-aligned relative

timeline. The results support our intuition of the existence of

inherent life cycles in both users and items, and using such life

cycles can help item recommendation methods better model

the temporal dynamics. The only exception is on Epinions

data set where the observed data is much more sparser than

other two data sets, but their performances are close. When the

sparsity is not that severe, our proposed BiCycle can perform

much better than TIMESVD.

From Table II, Fig. 3 and Fig. 4, we further observe

that BiCycle can usually perform better than its degenerated

version USERCYCLE and ITEMCYCLE. This observation

indicates that modeling life cycles for both user side and

item side is better than only modeling life cycles of one

side. Interestingly, we also observe that ITEMCYCLE usually

outperforms USERCYCLE. It suggests that it is easier to

capture the nature of item life cycles than to capture the

nature of user life cycles. However, if we consider the user life

cycles and item life cycles collectively, we can still improve

the recommendation performance.

The model POP serves as a naive baseline in our experi-

ments, and it is consistently outperformed by other methods
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(a) Recall@k at Epinions, D = 10. Vary k.

(b) Recall@k at DBLP-Terms, D = 10. Vary k.

(c) Recall@k at ML100K, D = 10. Vary k.

Fig. 3: Recall of different models. Each row refers to a data set and each column refers to a testing window. This figure present

the effect of varying k with fixed D = 10. Higher values are better.

since it only considers the overall popularity of items.

F. Parameter Settings

In this section, we show the effects of the parame-

ters in BiCycle. We test α and β with values among

{10, 1, 0.1, 0.01, 0.001, 0} separately, with λ = 1.0 and D =
10 fixed. The average results of recall@300 are reported. As

shown in Fig 5, the performance of our model using some

nonzero values of α and β can be better than the case of

α = 0 or β = 0. For example, in the Epinions dataset (Fig 5a),

the best parameter setting is α = 1.0 and β = 1.0 , and

the corresponding recall is 49.60%. This setting is the same

as our default setting in previous experiments. The situation

is similar in other two datasets. These results demonstrate

the effectiveness of the proposed temporal regularizations on

life cycles. Besides, we also present the effects of smoothing

parameters μ and π in Fig. 6a, where we set μ and π
with values among {0, 0.1, . . . , 0.6} separately. As shown in

Fig. 6a, the best setting for Epinion dataset is μ = 0.5 and

π = 0.1, and the corresponding recall is 42.73%. In previous

experiments, we use the default setting with μ = π = 0.6.

If we try to optimize the selection of μ and π values, the

performance improvement will be even larger. Finally, we

show the effects of M and N values in Fig 6b, we can see that

our model achieves at most 79.73% recall when considering

modeling multiple life stages for users and items (M = 2,

N = 5), which is much better than 75.51% achieved by static

setting (M = N = 1). In our experiments, we choose different
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(a) Recall@300 at Epinions. Vary D.

(b) Recall@300 at DBLP-Terms. Vary D.

(c) Recall@300 at ML100K. Vary D.

Fig. 4: Recall of different models. Each row refers to a data set and each column refers to a testing window. This figure

presents the effect of varying D with fixed k = 300. Higher values are better.

values of M and N for each dataset using cross-validation.

V. RELATED WORK

The goal of collaborative filtering (CF) [1], [3], [16]–[19]

is to make accurate recommendations to users based on their

past reviews and feedbacks on existing products. Sarwar et al.
proposed an item-based approach for collaborative filtering,

in which they utilize the similarity among items to make

recommendation [18]. Koren et al. proposed to use low rank

matrix factorization methodf for collaborative filtering, which

later become a popular approach in the literature [1]. Liu et
al. proposed a kernelized matrix factorization approach for

CF problem to improve the accuracy [16]. Koren proposed

the very first attempt in this direction, which is also known

as TIMESVD (or TimeSVD++) [3]. TIMESVD models a time-

variant bias for each user and item at every individual time

window. This model is proved to be effective on explicit

feedbacks data, where users assign real-valued ratings to con-

sumed items. So it can track the time-variant bias using these

observed values of ratings. However, in implicit feedbacks data

where ratings do not contain any preferences information, the

performance of TIMESVD can be degenerated. Xiong et al.
[8] proposed an tensor-based factorization model to directly

incorporate absolute time as an extra dimension in order to

capture the preference change over time. Li et al. [7] adapted

Bi-LDA to model the temporal dynamics on both user side and

item side. Even though their proposed method is outperformed

by Bi-LDA itself, they demonstrated that their model can
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achieve better interpretation of concept drift in users. Zhang

et al. [6] followed the generative method in [8] to propose

another Bayesian factorization model. A transaction matrix is

introduced in [6] to enforce the assumption of user preferences

evolve gradually over time, which is an analog of the fused

regularization we proposed in this paper, but in different

formulations. Chang et al. [20] proposed a novel PU learning

framework to capture the temporal dynamics in information

networks or a recommender system with streaming data.

Evolution inference is first introduced by Zhang et al. in

[21], in which they established the concept of life cycle and

life stage of the temporal data in Heterogeneous Information

Networks (HINs). In [21], the life cycle only exists in one

type of node (e.g., author in DBLP or project in Prosper.) In

this paper, we extend the concepts of life cycle and life stage

to both user side and item side. To the best of our knowledge,

this paper is the first endeavor to incorporate the life cycle

into item recommendation.

VI. CONCLUSION

We studied the item recommendation problem with life

cycles. We proposed BiCycle to effectively incorporate the

life cycles of users and items into the recommendation model.

Different from previous models, BiCycle considers temporal

dynamics using life cycles instead of absolute time-line. To

alleviate the sparsity, BiCycle utilizes exponential smoothing

to smooth the data over the life stages. Besides, BiCycle en-

forces two temporal regularizations to encourage the variations

within each life stage to be small and to force the evolution

between continuous stages not too rapid. Our experimental

study on three real-world datasets demonstrate that BiCycle

can improve the item recommendation quality.
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