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Abstract

The analysis of brain imaging data has attracted much
attention recently. A popular analysis is to discover a
network representation of brain from the neuroimaging
data, where each node denotes a brain region and each
edge represents a functional association or structural
connection between two brain regions. Motivated by
the multi-subject and multi-collection settings in neu-
roimaging studies, in this paper, we consider brain net-
work discovery under two novel settings: 1) unified set-
ting: Given a collection of subjects, discover a single
network that is good for all subjects. 2) contrasting set-
ting : Given two collections of subjects, discover a sin-
gle network that best discriminates two collections. We
show that the existing formulation of graphical Lasso
(GLasso) cannot address above problems properly. Two
novel models, UGLasso (Unified Graphical Lasso)
and CGLasso(Contrasting Graphical Lasso), are pro-
posed to address these two problems respectively. We
evaluate our methods on synthetic data and two real-
world functional magnetic resonance imaging (fMRI)
datasets. Empirical results demonstrate the effective-
ness of the proposed methods.

1 Introduction

Recent years have witnessed an increasing amount of
data in the form of graph representations, which in-
volve complex structures, e.g., brain networks and social
networks. For instance, a brain network is composed
of brain regions as the nodes and functional/structural
connectivities between the brain regions as the links.
The network representation of human brain as shown
in right hand side of Fig. 1(a) is useful in many ways.
For example, one can learn subgraph patterns in the
brain networks to build classification models for disease
diagnosis [11]. However, in many real-world studies, the
connectivities between different brain regions are not
available and should be derived from the neuroimaging
data, e.g., fMRI data. In this paper, we study the prob-
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Figure 1: An illustration of two tasks of brain network
discovery.
lem of brain network discovery, which aims at inferring
the functional connectivities among a set of predefined
non-overlapping brain regions. Previous studies usu-
ally focus on inferring a network for a single subject or
treating a collection of subjects as a single subject by
concatenating the data of multiple subjects [10,14]. As
the increasing availability of neuroimaging data in re-
cent years, we usually have one or more collections of
subjects in brain datasets. The problem of discovering
a network across collection of subjects is interesting and
important. In this paper, we explore two novel settings
on brain network discovery. The first one is to find
a representative brain network on a single collection,
where the discovered network is good for all subjects in
the collection, while it is similar to each subject’s best
network. We call this setting unified network discovery,
which is illustrated in Fig. 1(a). The second setting we
study is to discover a discriminative network between
two collections of subjects, where the inferred network
retains the differential connectivities between two col-
lections. We call the second setting contrasting network
discovery, which is illustrated in Fig. 1(b). Such sce-
nario is very common in neuroimaging analysis, where
subjects can be grouped using different attributes, such
as genders, ages, neurological diseases etc.
Problems Studied: Fig. 2 presents the dicovered indi-
vidual brain network for five healthy subjects in ADNI
dataset using standard GLasso. Even all five subjects
come from the healthy collection, one can observe that
the networks are widely different from each other. This
example illustrates the difficulty of discovering a repre-
sentative network for a collection of subjects. Hence,



-0.012

-0.006

0

0.006

0.012

-0.017

-0.0084

0

0.0084

0.017

-0.029

-0.015

0

0.015

0.029

-0.009

-0.0045

0

0.0045

0.009

-0.013

-0.0063

0

0.0063

0.013

Figure 2: The individual networks derived by GLasso from fMRI scans of five healthy subjects in ADNI dataset.

inferring a network without considering the differences
among subjects may lead to unsatisfactory results. Uni-
fied network discovery aims at finding a single represen-
tative network that is good for all subjects in a collec-
tion, which helps the neurology professionals to derive
the common connectivity patterns for certain group of
individuals. In this paper, we propose a novel algorithm
called UGLasso (Unified Graphical Lasso) to address
the unified network discovery problem.

In the contrasting setting where we have two col-
lections of subjects, an usual question one may ask is
what are the differences between the two collections. A
common attempt to answer the question is to infer a
network for each collection respectively and to compare
them. However, this approach can be hindered in cer-
tain circumstances. For instance, in some neuroimag-
ing datasets, the number of nodes in the network can
be as large as 40 thousands. Thus, inferring two sep-
arated large-scale networks can be expensive. Besides,
due to the underlying unreliability and the existence
of noises in the signals, it would be difficult and time
consuming for one to extract the differences between
two inferred networks. Hence, solving the proposed con-
trasting network discovery problem is a much more effi-
cient way to obatin the discriminative connectivity pat-
terns between two collections. In this paper, we propose
another novel algorithm called CGLasso (Contrasting
Graphical Lasso) to address the contrasting network
discovery problem.

The contributions of this paper are as follows.

• We formulate the novel problems of unified network
discovery and contrasting network discovery.

• We show how to use a modified gradient projected
to solve the two proposed problems while preserve
the solution to be positive-definite.

• We demonstrate the effectiveness of our proposed
methods on synthetic datasets with ground truth
and on two real-world neuroimaging datasets.

2 Problem Formulation

2.1 Preliminary Assume we are given n observa-
tions X ∈ Rn×m from a m-variate normal distribution
N (0,Σ), where n denotes the number of samples, m

denotes the number of variables and Σ denotes the co-
variance matrix of the distribution. The problem of esti-
mating the inverse of covariance matrix Θ = Σ−1 from
X is known as the inverse covariance estimation [2, 7].
If the (i, j)-th entry of Θij is zero, then variables i and
j are conditionally independent, given the other vari-
ables. The inverse covariance estimation can be cast as
the problem of minimizing `1-regularized negative log
likelihood as

minimize
Θ�0

−log det Θ + tr(SΘ) + λ||Θ||1 (2.1)

where S = 1
nXTX is the empirical covariance matrix,

||Θ||1 is the `1-norm regularization that encourages
sparse solutions, and λ is a positive parameter denotes
the strength of regularization. In the case where S � 0,
the maximum likelihood estimate (MLE) of Σ−1 can
be recovered by setting λ = 0. However, in many high
dimensional datasets, the number of samples n can be
smaller than the number of variables m, and S can
be singular. In such cases, additional regularizations,
such as `1-norm, are usually used to estimate Θ. It is
obvious that solving Eq. (2.1) leads to the `1-regularized
maximum likelihood estimation (MLE) of Σ−1.
Stacking Approach to Multi-subject Study : In brain
imaging studies, researchers usually collect data from
multiple subjects. The data of the i-th subject can be
represented by Xi ∈ Rni×m, where ni is the number
of samples of subject i. Conventional approaches [10,
14] on multi-subject studies usually stack the data
matrices of different subjects into X = (X1, . . . ,XN ) ∈
R(

∑N
i=1 ni)×m. Then 1∑N

i=1 ni
XTX can be used as S in

Eq. (2.1) to obtain a unified network Θ of all subjects.
However, this approach does not consider the differences
between subjects.

2.2 Unified Graphical Lasso In the unified setting,
we are given a collection of data matrices {X1, . . . ,Xp}
with the same sets of m variables, where Xi ∈ Rni×m.
And thus, we can compute a corresponding collection
of empirical covariance matrices {S1, . . . ,Sp}, where
Si = 1

ni
XT
i Xi. The goal is to derive a single estimated

inverse covariance matrix Θ̂ that obeys the following
two criteria: i) Has high likelihood for all subjects.
ii) The single estimated inverse covariance matrix is



similar to each subject’s individual estimated inverse
covariance matrix. The first criterion requires the
solution to be quantitatively good on every subject.
The second criterion put enforcement on the solution
to be quantitatively similar to the estimated inverse
covariance matrix of each subject in the collection.

The negative log likelihood of a estimated in-
verse covariance matrix Θ for subject i is defined as
−log det Θ + tr(SiΘ). And the overall likelihood can
be expressed by the average the likelihood of Θ for each
subject:

L(Θ,S1, . . . ,Sp) =
1

p

p∑
i=1

(
− log det Θ + tr(SiΘ)

)
= −log det Θ + tr(S̄Θ)

(2.2)

where S̄ = 1
p

∑p
i=1 Si. Further we define the similarity

between two inverse covariance matrices Θi and Θj

as the square of the Frobenius norm of Θi − Θj . So
the criterion 2) can be written as the minimization of∑p
i=1 ||Θ−Θ̂i||2F , where Θ̂i = arg minΘ�0−log det Θ+

tr(SiΘ) + λ||Θ||1 is the estimated individual inverse
covariance matrix for subject i.

Maximizing criterion 1) is equivalent to minimizing
Eq. (2.2). With the objective 1) and 2), we adopt a
standard approach of combining them into a objective
function with a weighting parameter α and an `1-norm
regularization as follows, which is solved by UGLasso:

minimize
Θ�0

L(Θ,S1, . . . ,Sp) +
α

p

p∑
i=1

||Θ− Θ̂i||2F + λ||Θ||1

(2.3)

2.3 Contrasting Graphical Lasso In the contrast-
ing setting, we are given two collections of data ma-

trices {X(A)
1 , . . . ,X

(A)
p } and {X(B)

1 , . . . ,X
(B)
q } with the

same set of variables. We can compute the correspond-

ing empirical covariance matrices {S(A)
1 , . . . ,S

(A)
p } and

{S(B)
1 , . . . ,S

(B)
q } accordingly. The goal is to derive a

single discriminative inverse covariance matrix between
two collections in that the likelihood is small for the
first collection but large for the second. The estimated
contrasting inverse covariance matrix is the one whose
likelihoods on the each subject best distinguishes the
two collections. Our objective function is defined as fol-
lows, which is solved by CGLasso:

minimize
Θ�0

1

p

p∑
i=1

tr(S
(A)
i Θ)− 1

q

q∑
j=1

tr(S
(B)
j Θ) + λ||Θ||1

(2.4)

= tr(ŜΘ) + λ||Θ||1

where Ŝ = 1
p

∑p
i=1 S

(A)
i − 1

q

∑q
j=1 S

(B)
j . The log deter-

minant terms for two collections are canceled under the
contrasting setting. Although Eq. (2.4) resembles linear
programming problem, the existence of `1-norm regu-
larization and positive-definite constraint prohibits the
standard approach and makes it challenging to solve.

3 Algorithms

In this section we present the UGLasso and CGLasso
algorithms in detail. Both objectives proposed in Sec. 2
can be transformed to the following form:

minimize
Θ�0

g(Θ) + λ||Θ||1 (3.5)

where g(Θ) is a differentiable smooth function and
λ||Θ||1 is the non-differentiable regularization func-
tion. Specifically, we have g(Θ) = L(Θ,S1, . . . ,Sp) +

α
∑p
i=1 ||Θ − Θ̂i||2F for unified setting and g(Θ) =

tr(ŜX) for contrasting setting.
Following the classic strategy in linear programming

for addressing the `1-norm minimization problems, we
transform the elements of the norm into positive and
negative parts and reform Eq. (3.5) as follows:

minimize
Θ+,Θ−

g(Θ+ −Θ−) + λ vec(Θ+)>1 + λ vec(Θ−)>1

subject to Θ+ −Θ− � 0

Θ+ ≥ 0,Θ− ≥ 0
(3.6)

where Θ+
ij = max(Θij , 0), Θij = max(−Θ−ij , 0), 1

is the column-vector of all ones which has the same
length as vec(Θ), so vec(Θ)T1 =

∑
ij Θij . Thus, it

is obvious that vec(Θ+)>1 + vec(Θ−)>1 = ||Θ||1, and
Θ = Θ+ −Θ−, then Eq. (3.5) and Eq. (3.6) shares the
same minimizer. We also use Θ+ ≥ 0 to denote that
Θ+
ij ≥ 0, for all 1 ≤ i, j ≤ m. Same thing for Θ− ≥ 0.

We further use Θ̃ = (Θ+,Θ−) to simplify Eq. (3.6)

minimize
Θ̃

g̃(Θ̃) + λ vec(Θ̃)>1︸ ︷︷ ︸
f(Θ̃)

subject to Θ+ −Θ− � 0

Θ̃ ≥ 0

(3.7)

where g̃(Θ̃) is the corresponding equivalent dual func-
tion of g(Θ). In contrasting setting where g(Θ) =
tr(ŜΘ), the corresponding dual can be represented as

g̃(Θ̃) = tr(
∗
SΘ̃), where

∗
S = (Ŝ,−Ŝ). Similar construc-

tion can be performed on the unified setting too.
We note that Eq. (3.7) is a smooth optimization

problem with non-negativity and positive-definite con-
straints. If we treat the positive-definite constraint



Algorithm 1 Algorithm for Solving Eq. (3.7)

Require: S, λ, itermax
1: Initialize Θ0 ← Im×m, iter ← 0
2: Project the initial estimation Θ0 ← PC(Θ0)
3: ft ← f(Θ(0)) , gt ← Of(Θ(0))
4: repeat
5: Initialize s using Eq. (3.12)
6: Find the largest s satisfies Eq. (3.11) and pos-

itive definite constraint by performing the non-
monotonic Armijo backtracking line search.

7: Compute the new projection Θt+1 ← PC(Θt −
sgt) using Eq. (3.10).

8: Compute the new objective function ft+1 ←
f(Θt+1)

9: Compute the new gradient gt+1 ← Of(Θt+1)
10: until iter = itermax or convergence
11: Return Θt+1

as inactive, the remaining constraint is a convex non-
negative cone, then one can apply projected gradient
method to solve Eq. (3.7). In this work, we consider a
variant of the projected gradient method that updates
the solution in each iteration as

Θ̃(i+1) ← PC(Θ̃(i) − s∇f(Θ̃(i))) (3.8)

where s is the step size to be selected by backtracking
line search strategy and PC is a function defined by

PC(Θ)
4
= arg min

y∈C
||Θ− y||2 (3.9)

is the Euclidean projection of Θ onto convex set C.
Here, we have C = {y : y > 0} is a non-negative cone.
With this convex set, the solution to Eq. (3.9) is trivial,
we simply project every dimension of Θ to the non-
negative part as

yij ← max(Θij , 0). (3.10)

Algorithm 2 UGLasso

Require: S1, . . . ,Sp, λ, α
1: Compute S̄← 1

p

∑p
i=1 Si.

2: Infer Θ̂i ← GLasso(Si, λ) for i ∈ [1, p].
3: Let g(Θ) ← −log det Θ + tr(S̄Θ) + α

p

∑p
i=1 ||Θ −

Θ̂i||2F
4: Solve Eq. (3.5) to get Θ̂ using Algorithm 1.
5: Return Θ̂

For the selection of step size s in Eq. (3.9), we
employ non-monotonic Armijo backtracking line search

Algorithm 3 CGLasso

Require: S
(A)
1 , . . . ,S

(A)
p ,S

(B)
1 , . . . ,S

(B)
q , λ

1: Compute Ŝ← 1
p

∑p
i=1 S

(A)
i − 1

q

∑q
i=1 S

(B)
i .

2: Let g(Θ)← tr(ŜΘ)
3: Solve Eq. (3.5) to get Θ̂ using Algorithm 1.
4: Return Θ̂

[8], which accepts the largest s that satisfies

f(Θ̃(i+1)) ≤ max
k=i−j:i

(
f(Θ̃(k))

)
+η∇f(Θ̃(i)))>(Θ̃(i+1)−Θ̃(i))

(3.11)
where η ∈ (0, 1) is the sufficient decrease parameter
(usually small) and j is the reference memory parameter
typically set as 10. Armijo backtracking line search does
not always decrease the objective function, but it can
ensure the global convergence of the projected gradient
method as well as enhance the convergence rate [6]. We
also use Barzilai-Borwein initialization proposed in [3]
to setup the step size in the k-th iteration:

s
(k)
0 =

(w(k))>(Θ̃(k) − Θ̃(k−1))

(w(k))>w(k)
(3.12)

where w(k) = ∇f(Θ̃(k))−∇f(Θ̃(k−1)).
Now we recall the positive-definite constraint. We

first note that it is obvious the projection in Eq. (3.9)
with C = {y : y > 0} does not affect the positive-
definiteness of a matrix, i.e., if Θ is a positive-definite
matrix, then PC(Θ) is also positive-definite. Thus, to
guarantee that our algorithm always find a positive-
definite solution, we need prove the following theorem.

Theorem 3.1. For any symmetric matrix Θ � 0 and
symmetric D, there exists an ᾱ > 0 such that for all
α < ᾱ the matrix Θ− αD � 0.

Proof. We first let D̂ = −D, where D̂ is also symmetric.
Let σmin(Θ) to be the smallest eigenvalue of Θ. When

α < σmin(Θ)

||D̂||2
, we have ||αD̂||2 < σmin(Θ). From

Lemma 3.1 we can conclude that Θ+αD = Θ−αD̂ � 0

Lemma 3.1. For any symmetric matrix Θ � 0 and
symmetric D, if ||D||2 < σmin(Θ) then Θ + D � 0.

Proof. Since Θ � 0 ⇐⇒ z>Θz > 0,∀z 6= 0, with the
spectral theorem, we have z>Θ ≥ σmin(Θ)||z||22. By
using Cauchy-Schwartz’s inequality, we have |z>Dz| ≤
||D||2||z||22,∀z. Hence, it implies z>Dz ≥ −|z>Dz| ≥
−||D||2||z||22. Therefore,

z>(Θ + D)z = z>Θz + z>Dz

≥ σmin(Θ)||z||22 − ||D||2||z||22
=
(
σmin(Θ)− ||D||2

)
||z||22 > 0,∀z 6= 0.



since ||D||2 < σmin(Θ). So Θ + D � 0 holds.

Accordingly, given Θ̂(i) in iteration i that is
positive-definite, the line search process can always find
a step size s > 0 that make Θ̂(i+1) = PC(Θ̃(i) −
s∇f(Θ̃(i))) to be positive-definite as well. The modified
projected gradient algorithm for solving Eq. 3.7 is sum-
marized in Algorithm 1. The UGLasso and CGLasso
algorithms are summarized in Algorithm 2 and Algo-
rithm 3 respectively.

4 Simulated Study on Synthetic Data

Due to the lack of ground truth in real neuroimaging
datasets, synthetic data is considered to be an impor-
tant tool to evaluate the effectiveness of brain network
discovery methods. We first evaluate our methods on
synthetic data where ground truth (network structure)
is available.

4.1 Evaluation on UGLasso • Dataset: The first
set of synthetic data is generated to comparing the effec-
tiveness of the proposed unified graphical Lasso method
with GLasso. We adopt the approach in [16] with some
modifications to generate the synthetic precision matri-
ces. To simulate subjects in single collection, we gener-
ate p separate sparse precision matrices of size m ×m
with similar structure. Specifically, the first step is to
randomly generate a basal positive definite matrix Θb

of size m×m, where we control the density of Θb to be
ρb ∈ (0, 1). Then we generate p different positive def-
inite noise matrices {N1, . . . ,Np}, each of size m ×m
and density ρn. At last we add each noise matrix to the
basal matrix respectively to get the collection of ground
truth matrices G = {G1, . . . ,Gp}, where Gi = Θb+Ni.
By doing so, we retain the positive definiteness of each
ground truth matrices as well as control the similarity
among them. With the collection of ground truth ma-
trices, we can draw p separate sample matrices of size
n×m from the Gaussian distribution for each subject to
simulate the fMRI signals, where n denotes the number
of samples (or the number of time steps in fMRI). With-
out losing generality, we simply use the same n for all
subjects in the collection. To numerically evaluate the
compared methods, we prepare three synthetic datasets
with following parameters:

• Dataset 1 (Weak Noises) : m = 50, p = 50, ρb =
0.01, ρn = 0.005, n = 60, 80, . . . , 200.

• Dataset 2 (Moderate Noises): m = 50, p =
100, ρb = 0.01, ρn = 0.01, n = 60, 80, . . . , 200.

• Dataset 3 (Strong Noises): m = 50, p =
100, ρb = 0.01, ρn = 0.05, n = 60, 80, . . . , 200.

• Experimental Protocols: We follow the approach as
described above to obtain the collection of ground
truths G. For each choice of sample size n,
we randomly draw a collection of sample matrices

X (m×n) = {X(m×n)
1 , . . . ,X

(m×n)
p } from Gaussian dis-

tribution based on G. Then the empirical covariance
matrix S for the collection can be computed using the
stack approach described in Section 2. GLasso uses S
to estimate the precision matrix for the collection, and
UGLasso uses both S and X (m×n). To be fair, we set
the parameters for both methods to make the estimated
matrices to have similar number of nonzero entities. We
repeat this process 5 times for each choice of n.

(a) Evaluate against Θb (b) Evaluate against G

(c) Evaluate against Θb (d) Evaluate against G

(e) Evaluate against Θb (f) Evaluate against G

Figure 3: Comparison between Uglasso and GLasso
on three synthetic datasets in terms of F1 score on
connectivity inference.

• Evaluation Metrics: We follow [16] to define the F1

score of connectivity inference as F1 =
2n2

d

nand+ngnd
,

where nd is the number of true edges detected by the
algorithm, ng is the number of true edges and na is
the total number of edges detected. Larger F1 score
is better. In our experiments we have a collection
of ground truth matrices G and a single unified basal



ground truth matrix Θb. To evaluate the performance
of finding representative networks, we report two F1
scores in each experiment. The first one is obtained by
evaluating the inferred network against Θb, where the
noises are excluded. This evaluation aims at assessing
the ability of recovering the real representative structure
from noisy signals. The second one is obtained by
evaluating the inferred network against each network
in G, where noises are not excluded in the evaluation.
• Results Analysis: The results on synthetic dataset
1-3 are demonstrated in Fig. 3, where we compare
the proposed UGLasso with GLasso in terms of F1
score. The left column of Fig. 3 shows the evaluation
against the basal truth matrix Θb. The right column of
Fig. 3 shows the evaluation against noisy ground truth
matrices G. We have following observations.

• UGLasso recovers the basal truth network better
than GLasso (Fig. 3(a), 3(c), 3(e)) consistently.

• When we include the noises in evaluation,
UGLasso achieves competitive performance com-
pared to GLasso, and it usually outperforms
GLasso when the number of samples n > 100
(Fig. 3(b), 3(d)).

• Due to the existence of strong noises in dataset 3,
UGLasso is outperformed by GLasso (Fig. 3(f)),
where the ground truths contain much more noises
than authentic signals. It is likely that GLasso
over-fits the noises to achieve higher F1 score in
this case.

4.2 Evaluation on CGLasso • Dataset: The sec-
ond set of synthetic data is generated to comparing
CGLasso with GLasso. As in the contrasting setting
where we have two collections of subjects, we need gen-
erate a ground truth matrix for each collection. Since we
do not enforce the inferred network to be similar to any
individual network, we simply use a precision matrix
to represent the ground truth network of a collection.
To make the network easy to visualize, we divide the
m×m matrix into several l× l square blocks. Then we
randomly select some blocks (symmetrically) to fill in
values, and leave the rest all 0s. At last we add some
random noises to the matrix. we generate three syn-
thetic datasets with parameters as follows:

• Dataset 4: m = 50, l = 10, n = 200. The
generated ground truth for collection (A) and (B)
are shown in Fig. 4(a) and Fig. 4(b) respectively.

• Dataset 5: m = 50, l = 5, n = 200. The generated
ground truth for collection (A) and (B) are shown
in Fig. 4(f) and Fig. 4(g) respectively.

• Dataset 6: Same parameters as Dataset 5, differ-
ent random seed is used. The generated ground
truth for collection (A) and (B) are shown in
Fig. 4(k) and Fig. 4(l) respectively.

• Experimental Protocols: We compare the inferred
discriminative network derived by CGLasso with the
two inferred networks for collection (A) and collection
(B) derived by standard GLasso. We choose the same
value of λ for both methods in all experiments.
• Results Analysis: Since there is no standard pro-
tocol to evaluate contrasting inference, we demostrate
the ground truths and inferred networks for synthetic
datasets 4-6 in Fig. 4. The ground truth precision ma-
trices for collection (A) and (B) are shown in the first
column and the second column respectively; the differ-
ence of the ground truths between two collections is
shown in the third column; the discriminative network
inferred by the proposed contrasting GLasso is shown in
the fourth column; at last, the fifth column shows the
network structure of Θ̂(A)−Θ̂(B), where Θ̂(A) and Θ̂(B)

denote the precision matrix inferred for collection (A)
and collection (B) by GLasso respectively. One can ob-
serve that CGLasso captures the differences between
two collections fairly good with less noises compared to
the ones derived by GLasso (Θ̂(A)−Θ̂(B)). Besides, one
can also observe that GLasso has much more false posi-
tive in than CGLasso does. These results demonstrate
that CGLasso is a more suitable tool for discriminative
network discovery.

5 Real Data

5.1 Data Collection • Alzheimer’s Disease
(ADNI): The first dataset is collected from the
Alzheimer’s Disease Neuroimaging Initiative1. The
dataset consists of records of patients with Alzheimer’s
Disease (AD) and Mild Cognitive Impairment (MCI).
We downloaded all records of resting-state fMRI
images and treated the normal brains as healthy
subjects, and AD+MCI as the morbid subjects. We
applied Automated Anatomical Labeling (AAL2) to
extract a sequence of responds from each of the 116
anatomical volumes of interest (AVOI), where each
AVOI represents a different brain region. We keep 90
cerebral regions, excluding 26 cerebellar regions. We
follow the same preprocess steps in [11] to obtain the
cleaned time series data.
• Human Immunodeficiency Virus Infection (HIV): The
second dataset is collected from the Chicago Early HIV
Infection Study in Northwestern University [15]. The

1http://adni.loni.ucla.edu/
2http://neuro.imm.dtu.dk/wiki/Automated_Anatomical_

Labeling



(a) Ground Truth (A) (b) Ground Truth (B) (c) Ground Truth (A-B) (d) CGLasso (e) GLasso (A-B)

(f) Ground Truth (A) (g) Ground Truth (B) (h) Ground Truth (A-B) (i) CGLasso (j) GLasso (A-B)

(k) Ground Truth (A) (l) Ground Truth (B) (m) Ground Truth (A-

B)
(n) CGLasso (o) GLasso (A-B)

Figure 4: Comparison between Contrasting Graphical Lasso and GLasso on three synthetic datasets.

dataset contains fMRI brain images of patients with
early HIV infection (morbid) as well as normal controls
(healthy). The same preprocessing steps as in ADNI
dataset were used to extract the cleaned time series.

5.2 Results and Discussion • Unified Setting : The
results of UGLasso on HIV data are shown in Fig. 5
and Fig. 7. The results for unified graphical Lasso of on
HIV data are shown in Fig. 8 and Fig. 9. In all figures,
we present the visualization of brain connectivity on
the left and the corresponding precision matrix on the
right. In each precision matrix, the diagonal blocks
are referring to prefrontal lobe, other parts of frontal
lobe, corpus striatum, occipital lobe, parietal lobe and
temporal lobe respectively. All results are derived using
λ = 2.0 and α = 0.5.

By comparing Fig. 5 and Fig. 7, we observe that
the overall interconnection between different lobes are
weaker in AD patients than the ones in healthy people.
These degeneration may explain the AD symptoms such
as difficulty thinking and understanding, confusion in
the evening. Because understanding and sense of timing
usually require the collaboration of several regions in

brain, with degenerated connectivity between lobes, AD
patients may not function well as normal people. By
comparing Fig. 8 and Fig. 9, we observe that HIV
patients have increased connectivity inside occipital
lobe compared to the healthy people, which is consistent
with previous studies [4]. This may be explained by
that people infected by HIV usually vision problems and
the major functions of occipital lobe are receives visual
information and interprets color, shape and distance [1].
• Contrasting Setting : Here we attempt to see if the
CGLasso finds any reasonable discriminative patterns
between the healthy collection and the morbid collection
in real fMRI data. The inferred networks for ADNI
dataset and HIV datasets are illustrated in Fig. 6 and
Fig. 10. For ADNI dataset, as can be seen from
Fig. 6, the major differences between AD patients and
normal people are located in parietal lobe and temporal
lobe, which is consistent with previous studies [9, 16].
Strong decrease of connectivity in these lobes have been
detected for AD patients before, which explains the
symptoms such as memory loss, mental confusion etc.

Besides, we also observe a strong connection be-
tween “Frontal Sup Orb L” and “Frontal Sup Orb R”
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Figure 5: Results of UGLasso for the healthy collection
in ADNI data. The diagonal blocks in Fig. (b) refers
to prefrontal lobe, other parts of frontal lobe, corpus
striatum, occipital lobe, parietal lobe and temporal lobe
respectively (Same for Figure 6-10).
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Figure 6: Results of CGLasso for ADNI data.
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Figure 7: Results of UGLasso for the morbid collection
in ADNI data.

in Figure 6(a) (the red line across left hemisphere and
right hemisphere on the top), indicating that AD pa-
tients exhibit a significant different patterns toward the
activity between these two regions in frontal lobe. Pre-
vious studies [14] sometimes exclude the frontal lobe in
analysis since it is thought to be unrelated to AD. How-
ever, recent works show there exists increased connec-
tivity in the frontal lobe of AD patients [16]. CGLasso
also reveals such pattern in the frontal lobe.
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Figure 8: Results of UGLasso for the healthy collection
in HIV data.
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Figure 9: Results of UGLasso for the morbid collection
in HIV Data.
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Figure 10: Results of CGLassofor HIV data.

As to the HIV dataset, from Fig. 10 we can observe
that the major differences between HIV patients and
healthy people are located in occipital lobe and part
of parietal lobe, which is also supported by previous
studies [4]. Several connections within occipital lobe are
proved to be discriminative subgraph patterns that are
considered to be associated with HIV. No connection
is detected in temporal lobe for HIV dataset under
contrasting setting, this may because HIV patients do
not exhibit the mental symptoms as AD patients do.

6 Related Works

To the best of our knowledge, this paper is the first work
exploring the brain network discovery under unified



and contrasting settings. Our work is related to brain
network discovery and contrasting learning.

6.1 Brain Network Discovery Most works in this
line focus on finding a network representation using
sparse Gaussian graphical model (sGGM). Banerjee et
al. [2] first formulated the problem of sparse maximum
likelihood estimation, where they assumed that the
multi-variate variables follow a certain multi-variant
Gaussian distribution. Friedman et al. [7] reform the
dual problem of Eq. (2.1) as a Lasso-type problem and
apply the model on graphs, their method is widely
referred to as GLasso. Sun et al. [14] and Huang et al.
[10] utilize sGGM to infer networks for three collections
of subjects related to Alzheimer’s disease, where they
treat each collection as a single subject. Davidson et al.
[5] propose a supervised tensor-based framework to infer
both brain regions and brain connectivity from fMRI
data, where strong domain knowledges are required
in training. Yang et al. [16] formulate a variant of
GLasso called fused multiple graphical Lasso (FMGL)
to derive p networks for p similar collections of subjects.
FMGL is closely related to our contrasting setting,
but with several major differences: (i) FMGL usually
infer p separate networks for p collections where p >
2 while contrasting network discovery infers a single
network between two collections; (ii) FMGL assumes
that one can order the p collections properly where
neighbored collections share similar network structure,
while contrasting network discovery does not. (iii) For
p = 2, FMGL inferres two similar networks.

6.2 Contrast Learning Contrast learning aims at
finding discriminative patterns between classes of data.
Ramamohanarao et al. [13] study the problem of ex-
tracting subgraphs that is frequent in one database but
infrequent in another database. Kuo et al. [12] propose
to finding a contrasting cut in two collections of graphs,
where the cut has a low cost for one collection but has
a high cost for the other collection. The problem pro-
posed in [12] is similar to our contrasting network dis-
covery, but they aims at learning the imaging segmen-
tation while we aims at learning the connectivities.

7 Conclusion
Neuroimaging analysis usually involves one or more
collections of subjects, e.g. healthy collection v.s.
morbid collection. In this paper we explore the problems
of unified network discovery on a collection of subjects
and contrasting network discovery on two collections
of subjects. Two novel algorithms, UGLasso and
CGLasso, are proposed to solve them respectively.
Extensive experiments conducted on synthetic datasets
and real-world datasets demonstrate the outstanding
performance and usefulness of the proposed methods.
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